Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces

Takao Ohno; Tetsu Shimomura

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 371-394
  • ISSN: 0011-4642

Abstract

top
We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.

How to cite

top

Ohno, Takao, and Shimomura, Tetsu. "Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces." Czechoslovak Mathematical Journal 66.2 (2016): 371-394. <http://eudml.org/doc/280087>.

@article{Ohno2016,
abstract = {We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.},
author = {Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; metric measure space; Hajłasz-Sobolev space; Musielak-Orlicz space; capacity; variable exponent; zero boundary values; Riesz potential; Sobolev inequality; variable exponent; metric measure space; nondoubling measure},
language = {eng},
number = {2},
pages = {371-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces},
url = {http://eudml.org/doc/280087},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 371
EP - 394
AB - We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.
LA - eng
KW - Sobolev space; metric measure space; Hajłasz-Sobolev space; Musielak-Orlicz space; capacity; variable exponent; zero boundary values; Riesz potential; Sobolev inequality; variable exponent; metric measure space; nondoubling measure
UR - http://eudml.org/doc/280087
ER -

References

top
  1. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65 Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  2. Adams, D. R., Hedberg, L. I., 10.1007/978-3-662-03282-4, Grundlehren der Mathematischen Wissenschaften 314 Springer, Berlin (1996). (1996) MR1411441DOI10.1007/978-3-662-03282-4
  3. ssaoui, N. Aï, Another extension of Orlicz-Sobolev spaces to metric spaces, Abstr. Appl. Anal. 2004 (2004), 1-26. (2004) MR2058790
  4. ssaoui, N. Aï, 10.1155/S1085337502203024, Abstr. Appl. Anal. 7 (2002), 357-374. (2002) MR1939129DOI10.1155/S1085337502203024
  5. Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics 129 Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
  6. Björn, A., Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, 17. European Mathematical Society Zürich (2011). (2011) Zbl1231.31001MR2867756
  7. Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser, Heidelberg (2013). (2013) Zbl1268.46002MR3026953
  8. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  9. Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660
  10. Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Variable exponent spaces on metric measure spaces, More Progresses in Analysis. Proc. of the 5th international ISAAC congress, Catania 2005 H. G. W. Begehr et al. World Scientific (2009), 107-121. (2009) Zbl1189.46027
  11. Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522. (2006) MR2248828
  12. Hajłasz, P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022
  13. Hajłasz, P., Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc. 145 (2000), 101 pages. (2000) Zbl0954.46022MR1683160
  14. Hajłasz, P., Koskela, P., Tuominen, H., 10.1016/j.jfa.2007.11.020, J. Funct. Anal. 254 (2008), 1217-1234. (2008) Zbl1136.46029MR2386936DOI10.1016/j.jfa.2007.11.020
  15. Harjulehto, P., Variable exponent Sobolev spaces with zero boundary values, Math. Bohem. 132 (2007), 125-136. (2007) Zbl1174.46322MR2338802
  16. Harjulehto, P., Hästö, P., 10.5209/rev_REMA.2004.v17.n1.16790, Rev. Mat. Complut. 17 (2004), 129-146. (2004) Zbl1072.46021MR2063945DOI10.5209/rev_REMA.2004.v17.n1.16790
  17. Harjulehto, P., Hästö, P., Koskenoja, M., Properties of capacities in variable exponent Sobolev spaces, J. Anal. Appl. 5 (2007), 71-92. (2007) Zbl1143.31003MR2314780
  18. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S., 10.1007/s11118-006-9023-3, Potential Anal. 25 (2006), 205-222. (2006) Zbl1120.46016MR2255345DOI10.1007/s11118-006-9023-3
  19. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S., Sobolev capacity on the space W 1 , p ( · ) ( n ) , J. Funct. Spaces Appl. 1 (2003), 17-33. (2003) MR2011498
  20. Harjulehto, P., Hästö, P., Pere, M., 10.7169/facm/1229616443, Funct. Approx. Comment. Math. 36 (2006), 79-94. (2006) Zbl1140.46013MR2296640DOI10.7169/facm/1229616443
  21. Harjulehto, P., Hästö, P., Pere, M., Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exch. 30 (2005), 87-103. (2005) Zbl1072.42016MR2126796
  22. Heinonen, J., Lectures on Analysis on Metric Spaces, Springer, New York (2001). (2001) Zbl0985.46008MR1800917
  23. Kilpeläinen, T., A remark on the uniqueness of quasi continuous functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), 261-262. (1998) Zbl0919.31006MR1601887
  24. Kilpeläinen, T., Kinnunen, J., Martio, O., 10.1023/A:1008601220456, Potential Anal. 12 (2000), 233-247. (2000) MR1752853DOI10.1023/A:1008601220456
  25. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H., 10.1007/s00526-011-0420-0, Calc. Var. Partial Differ. Equ. 43 (2012), 507-528. (2012) Zbl1238.31008MR2875650DOI10.1007/s00526-011-0420-0
  26. Kinnunen, J., Latvala, V., 10.4171/RMI/332, Rev. Mat. Iberoam. 18 (2002), 685-700. (2002) Zbl1037.46031MR1954868DOI10.4171/RMI/332
  27. Kinnunen, J., Martio, O., Choquet property for the Sobolev capacity in metric spaces, S. K. Vodopyanov Proc. on Analysis and Geometry Sobolev Institute Press, Novosibirsk (2000), 285-290. (2000) Zbl0992.46023MR1847522
  28. Kinnunen, J., Martio, O., The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. 21 (1996), 367-382. (1996) Zbl0859.46023MR1404091
  29. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1007/s10587-013-0063-8, Czech. Math. J. 63 (2013), 933-948. (2013) Zbl1313.46041MR3165506DOI10.1007/s10587-013-0063-8
  30. Mizuta, Y., Shimomura, T., Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad. Ser. A 80 (2004), 96-99. (2004) Zbl1072.46506MR2075449
  31. Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes Math. 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
  32. Ohno, T., Shimomura, T., 10.1007/s10587-015-0187-0, Czech. Math. J. 65 (2015), 435-474. (2015) Zbl1363.46027MR3360438DOI10.1007/s10587-015-0187-0
  33. Shanmugalingam, N., 10.4171/RMI/275, Rev. Mat. Iberoam. 16 (2000), 243-279. (2000) MR1809341DOI10.4171/RMI/275
  34. Tuominen, H., Orlicz-Sobolev Spaces on Metric Spaces, Annales Academiæ Scientiarum Fennicæ. Mathematica. Dissertationes 135 (2004), Suomalainen Tiedeakatemia, Helsinki. (2004) 
  35. Ziemer, W. P., 10.1007/978-1-4612-1015-3, Graduate Texts in Mathematics 120 Springer, Berlin (1989). (1989) Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.