Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 371-394
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topOhno, Takao, and Shimomura, Tetsu. "Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces." Czechoslovak Mathematical Journal 66.2 (2016): 371-394. <http://eudml.org/doc/280087>.
@article{Ohno2016,
abstract = {We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.},
author = {Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; metric measure space; Hajłasz-Sobolev space; Musielak-Orlicz space; capacity; variable exponent; zero boundary values; Riesz potential; Sobolev inequality; variable exponent; metric measure space; nondoubling measure},
language = {eng},
number = {2},
pages = {371-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces},
url = {http://eudml.org/doc/280087},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 371
EP - 394
AB - We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities.
LA - eng
KW - Sobolev space; metric measure space; Hajłasz-Sobolev space; Musielak-Orlicz space; capacity; variable exponent; zero boundary values; Riesz potential; Sobolev inequality; variable exponent; metric measure space; nondoubling measure
UR - http://eudml.org/doc/280087
ER -
References
top- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65 Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Adams, D. R., Hedberg, L. I., 10.1007/978-3-662-03282-4, Grundlehren der Mathematischen Wissenschaften 314 Springer, Berlin (1996). (1996) MR1411441DOI10.1007/978-3-662-03282-4
- ssaoui, N. Aï, Another extension of Orlicz-Sobolev spaces to metric spaces, Abstr. Appl. Anal. 2004 (2004), 1-26. (2004) MR2058790
- ssaoui, N. Aï, 10.1155/S1085337502203024, Abstr. Appl. Anal. 7 (2002), 357-374. (2002) MR1939129DOI10.1155/S1085337502203024
- Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics 129 Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
- Björn, A., Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, 17. European Mathematical Society Zürich (2011). (2011) Zbl1231.31001MR2867756
- Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser, Heidelberg (2013). (2013) Zbl1268.46002MR3026953
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660
- Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Variable exponent spaces on metric measure spaces, More Progresses in Analysis. Proc. of the 5th international ISAAC congress, Catania 2005 H. G. W. Begehr et al. World Scientific (2009), 107-121. (2009) Zbl1189.46027
- Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522. (2006) MR2248828
- Hajłasz, P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022
- Hajłasz, P., Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc. 145 (2000), 101 pages. (2000) Zbl0954.46022MR1683160
- Hajłasz, P., Koskela, P., Tuominen, H., 10.1016/j.jfa.2007.11.020, J. Funct. Anal. 254 (2008), 1217-1234. (2008) Zbl1136.46029MR2386936DOI10.1016/j.jfa.2007.11.020
- Harjulehto, P., Variable exponent Sobolev spaces with zero boundary values, Math. Bohem. 132 (2007), 125-136. (2007) Zbl1174.46322MR2338802
- Harjulehto, P., Hästö, P., 10.5209/rev_REMA.2004.v17.n1.16790, Rev. Mat. Complut. 17 (2004), 129-146. (2004) Zbl1072.46021MR2063945DOI10.5209/rev_REMA.2004.v17.n1.16790
- Harjulehto, P., Hästö, P., Koskenoja, M., Properties of capacities in variable exponent Sobolev spaces, J. Anal. Appl. 5 (2007), 71-92. (2007) Zbl1143.31003MR2314780
- Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S., 10.1007/s11118-006-9023-3, Potential Anal. 25 (2006), 205-222. (2006) Zbl1120.46016MR2255345DOI10.1007/s11118-006-9023-3
- Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S., Sobolev capacity on the space , J. Funct. Spaces Appl. 1 (2003), 17-33. (2003) MR2011498
- Harjulehto, P., Hästö, P., Pere, M., 10.7169/facm/1229616443, Funct. Approx. Comment. Math. 36 (2006), 79-94. (2006) Zbl1140.46013MR2296640DOI10.7169/facm/1229616443
- Harjulehto, P., Hästö, P., Pere, M., Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exch. 30 (2005), 87-103. (2005) Zbl1072.42016MR2126796
- Heinonen, J., Lectures on Analysis on Metric Spaces, Springer, New York (2001). (2001) Zbl0985.46008MR1800917
- Kilpeläinen, T., A remark on the uniqueness of quasi continuous functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), 261-262. (1998) Zbl0919.31006MR1601887
- Kilpeläinen, T., Kinnunen, J., Martio, O., 10.1023/A:1008601220456, Potential Anal. 12 (2000), 233-247. (2000) MR1752853DOI10.1023/A:1008601220456
- Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H., 10.1007/s00526-011-0420-0, Calc. Var. Partial Differ. Equ. 43 (2012), 507-528. (2012) Zbl1238.31008MR2875650DOI10.1007/s00526-011-0420-0
- Kinnunen, J., Latvala, V., 10.4171/RMI/332, Rev. Mat. Iberoam. 18 (2002), 685-700. (2002) Zbl1037.46031MR1954868DOI10.4171/RMI/332
- Kinnunen, J., Martio, O., Choquet property for the Sobolev capacity in metric spaces, S. K. Vodopyanov Proc. on Analysis and Geometry Sobolev Institute Press, Novosibirsk (2000), 285-290. (2000) Zbl0992.46023MR1847522
- Kinnunen, J., Martio, O., The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. 21 (1996), 367-382. (1996) Zbl0859.46023MR1404091
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1007/s10587-013-0063-8, Czech. Math. J. 63 (2013), 933-948. (2013) Zbl1313.46041MR3165506DOI10.1007/s10587-013-0063-8
- Mizuta, Y., Shimomura, T., Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad. Ser. A 80 (2004), 96-99. (2004) Zbl1072.46506MR2075449
- Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes Math. 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
- Ohno, T., Shimomura, T., 10.1007/s10587-015-0187-0, Czech. Math. J. 65 (2015), 435-474. (2015) Zbl1363.46027MR3360438DOI10.1007/s10587-015-0187-0
- Shanmugalingam, N., 10.4171/RMI/275, Rev. Mat. Iberoam. 16 (2000), 243-279. (2000) MR1809341DOI10.4171/RMI/275
- Tuominen, H., Orlicz-Sobolev Spaces on Metric Spaces, Annales Academiæ Scientiarum Fennicæ. Mathematica. Dissertationes 135 (2004), Suomalainen Tiedeakatemia, Helsinki. (2004)
- Ziemer, W. P., 10.1007/978-1-4612-1015-3, Graduate Texts in Mathematics 120 Springer, Berlin (1989). (1989) Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.