Hölder continuity results for a class of functionals with non-standard growth
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 129-157
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topEleuteri, Michela. "Hölder continuity results for a class of functionals with non-standard growth." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 129-157. <http://eudml.org/doc/196144>.
@article{Eleuteri2004,
abstract = {We prove regularity results for real valued minimizers of the integral functional $\int f (x, u, Du)$ under non-standard growth conditions of $p(x)$-type, i.e. $$L^\{-1\} |z|^\{p(x)\} \leq f (x, s , z)\leq L(1+|z|^\{p(x)\})$$ under sharp assumptions on the continuous function $p(x)>1$.},
author = {Eleuteri, Michela},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {129-157},
publisher = {Unione Matematica Italiana},
title = {Hölder continuity results for a class of functionals with non-standard growth},
url = {http://eudml.org/doc/196144},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Eleuteri, Michela
TI - Hölder continuity results for a class of functionals with non-standard growth
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 129
EP - 157
AB - We prove regularity results for real valued minimizers of the integral functional $\int f (x, u, Du)$ under non-standard growth conditions of $p(x)$-type, i.e. $$L^{-1} |z|^{p(x)} \leq f (x, s , z)\leq L(1+|z|^{p(x)})$$ under sharp assumptions on the continuous function $p(x)>1$.
LA - eng
UR - http://eudml.org/doc/196144
ER -
References
top- ACERBI, E.- FUSCO, N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Rat. Mech. Anal., 99 (1987), 261-281. Zbl0627.49007MR888453
- ACERBI, E.- FUSCO, N., A transmission problem in the calculus of variations, Calc. Var. Partial Differential Equations, 2 (1994), 1-16. Zbl0791.49041MR1384391
- ACERBI, E.- MINGIONE, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. Zbl0984.49020MR1814973
- ACERBI, E.- MINGIONE, G., Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Cl. Sci. (4), 30 (2001), 311-340. Zbl1027.49031MR1895714
- ACERBI, E.- MINGIONE, G., Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, no. 3 (2002), 213-259. Zbl1038.76058MR1930392
- ACERBI, E.- MINGIONE, G., Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris Ser. I, 334, no. 9 (2002), 817-822. Zbl1017.76098MR1905047
- COSCIA, A.- MINGIONE, G., Hölder continuity of the gradient of -harmonic mappings, C. R. Acad. Sci. Paris Ser. I, 328 (1999), 363-368. Zbl0920.49020MR1675954
- CUPINI, G.- PETTI, R., Hölder continuity of local minimizers of vectorial integral functionals, Nonlinear Diff. Equations Appl., 10, no. 3 (2003), 269-285. Zbl1023.49028MR1994811
- CUPINI, G.- FUSCO, N.- PETTI, R., Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. Zbl0949.49022MR1703712
- DIENING: Theoretical and numerical results for Electrorheological fluids, L., Ph. D. Thesis Universität Freiburg, 2002. Zbl1022.76001
- EKELAND, I., Nonconvex minimization problems, Bull. Am. Math. Soc., (3) 1 (1979), 443-474. Zbl0441.49011MR526967
- ESPOSITO, L.- LEONETTI, F.- MINGIONE, G., Higher integrability for minimizers of integral functionals with growth, J. Differential Equations, 157 (1999), 414-438. Zbl0939.49021MR1713266
- EDMUNDS, D.- RAKOSNIK, J., Sobolev embeddings with variable exponent, Studia Mathematica, 143 (2000), 267-293. Zbl0974.46040MR1815935
- EDMUNDS, D.- RAKOSNIK, J., Density of smooth functions in , Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. Zbl0779.46027MR1177754
- EVANS, L. C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. Zbl0627.49006MR853966
- FIORENZA, A., A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math., 4, no. 3 (2002), 587-605. Zbl1015.46019MR1918761
- FONSECA, I.- FUSCO, N., Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 463-499. Zbl0899.49018MR1612389
- FONSECA, I., FUSCO, N., MARCELLINI, P., An existence result for a non convex variational problem via regularity, ESAIM: Control, Opt. and Calc. Var., 7 (2002), 69-96. Zbl1044.49011MR1925022
- FUSCO, N.- HUTCHINSON, J. E., partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54, 1-2 (1985), 121-143. Zbl0587.49005MR808684
- FUCHS, M.- MINGIONE, G., Full regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250. Zbl0995.49023MR1771942
- FAN, X.- ZHAO, D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA, 36(A) (1999), 295-318. Zbl0927.46022MR1688232
- GIUSTI, E., Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994. Zbl0942.49002MR1707291
- MANFREDI, J. J., Regularity for minima of functionals with -growth, J. Differential Equations, 76 (1988), 203-212. Zbl0674.35008MR969420
- MARCELLINI, P., Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. Zbl0667.49032MR969900
- MARCELLINI, P., Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differential Equations, 90 (1991), 1-30. Zbl0724.35043MR1094446
- MARCELLINI, P., Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 1-25. Zbl0922.35031MR1401415
- MASCOLO, E.- MIGLIORINI, A. P., Everywhere regularity for vectorial functionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003), 399-418. Zbl1066.49023MR1988669
- RAJAGOPAL, K. R.- RŮŽIČKA, M., Mathematical modelling of electrorheological materials, Cont. Mech. Thermod., 13 (2001), 59-78. Zbl0971.76100
- RŮŽIČKA, M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, 329 (1999), 393-398. Zbl0954.76097MR1710119
- RŮŽIČKA, M., Electrorheological fluids: modeling and mathematical theory, Lecture notes in Mat.1748, Springer Verlag, Berlin, Heidelberg, New York (2000). Zbl0962.76001MR1810360
- STREDULINSKI, E. W., Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29 (1980), 407-413. Zbl0442.35064MR570689
- SERRIN, J.- ZOU, H., Symmetry of ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 148 (1999), 265-290. Zbl0940.35079MR1716665
- UHLENBECK, K., Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. Zbl0372.35030MR474389
- URAL'TSEVA, N., Quasilinear degenerate elliptic systems (Russian), Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7 (1968), 184-222. Zbl0196.12501MR244628
- ZHIKOV, V. V., On some variational problems, Russian J. Math. Physics, 5 (1997), 105-116. Zbl0917.49006MR1486765
- ZHIKOV, V. V., Meyers-type estimates for solving the non linear Stokes system, Differential Equations, 33 (1) (1997), 107-114. Zbl0911.35089MR1607245
Citations in EuDML Documents
top- Jens Habermann, Full Regularity for Convex Integral Functionals with Growth in Low Dimensions
- Michela Eleuteri, Regularity results for a class of obstacle problems
- Petteri Harjulehto, Variable exponent Sobolev spaces with zero boundary values
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.