Hölder continuity results for a class of functionals with non-standard growth

Michela Eleuteri

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 1, page 129-157
  • ISSN: 0392-4041

Abstract

top
We prove regularity results for real valued minimizers of the integral functional f x , u , D u under non-standard growth conditions of p x -type, i.e. L - 1 z p x f x , s , z L 1 + z p x under sharp assumptions on the continuous function p x > 1 .

How to cite

top

Eleuteri, Michela. "Hölder continuity results for a class of functionals with non-standard growth." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 129-157. <http://eudml.org/doc/196144>.

@article{Eleuteri2004,
abstract = {We prove regularity results for real valued minimizers of the integral functional $\int f (x, u, Du)$ under non-standard growth conditions of $p(x)$-type, i.e. $$L^\{-1\} |z|^\{p(x)\} \leq f (x, s , z)\leq L(1+|z|^\{p(x)\})$$ under sharp assumptions on the continuous function $p(x)>1$.},
author = {Eleuteri, Michela},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {129-157},
publisher = {Unione Matematica Italiana},
title = {Hölder continuity results for a class of functionals with non-standard growth},
url = {http://eudml.org/doc/196144},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Eleuteri, Michela
TI - Hölder continuity results for a class of functionals with non-standard growth
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 129
EP - 157
AB - We prove regularity results for real valued minimizers of the integral functional $\int f (x, u, Du)$ under non-standard growth conditions of $p(x)$-type, i.e. $$L^{-1} |z|^{p(x)} \leq f (x, s , z)\leq L(1+|z|^{p(x)})$$ under sharp assumptions on the continuous function $p(x)>1$.
LA - eng
UR - http://eudml.org/doc/196144
ER -

References

top
  1. ACERBI, E.- FUSCO, N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Rat. Mech. Anal., 99 (1987), 261-281. Zbl0627.49007MR888453
  2. ACERBI, E.- FUSCO, N., A transmission problem in the calculus of variations, Calc. Var. Partial Differential Equations, 2 (1994), 1-16. Zbl0791.49041MR1384391
  3. ACERBI, E.- MINGIONE, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. Zbl0984.49020MR1814973
  4. ACERBI, E.- MINGIONE, G., Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Cl. Sci. (4), 30 (2001), 311-340. Zbl1027.49031MR1895714
  5. ACERBI, E.- MINGIONE, G., Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, no. 3 (2002), 213-259. Zbl1038.76058MR1930392
  6. ACERBI, E.- MINGIONE, G., Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris Ser. I, 334, no. 9 (2002), 817-822. Zbl1017.76098MR1905047
  7. COSCIA, A.- MINGIONE, G., Hölder continuity of the gradient of p x -harmonic mappings, C. R. Acad. Sci. Paris Ser. I, 328 (1999), 363-368. Zbl0920.49020MR1675954
  8. CUPINI, G.- PETTI, R., Hölder continuity of local minimizers of vectorial integral functionals, Nonlinear Diff. Equations Appl., 10, no. 3 (2003), 269-285. Zbl1023.49028MR1994811
  9. CUPINI, G.- FUSCO, N.- PETTI, R., Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. Zbl0949.49022MR1703712
  10. DIENING: Theoretical and numerical results for Electrorheological fluids, L., Ph. D. Thesis Universität Freiburg, 2002. Zbl1022.76001
  11. EKELAND, I., Nonconvex minimization problems, Bull. Am. Math. Soc., (3) 1 (1979), 443-474. Zbl0441.49011MR526967
  12. ESPOSITO, L.- LEONETTI, F.- MINGIONE, G., Higher integrability for minimizers of integral functionals with p , q growth, J. Differential Equations, 157 (1999), 414-438. Zbl0939.49021MR1713266
  13. EDMUNDS, D.- RAKOSNIK, J., Sobolev embeddings with variable exponent, Studia Mathematica, 143 (2000), 267-293. Zbl0974.46040MR1815935
  14. EDMUNDS, D.- RAKOSNIK, J., Density of smooth functions in W k , p x , Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. Zbl0779.46027MR1177754
  15. EVANS, L. C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. Zbl0627.49006MR853966
  16. FIORENZA, A., A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math., 4, no. 3 (2002), 587-605. Zbl1015.46019MR1918761
  17. FONSECA, I.- FUSCO, N., Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 463-499. Zbl0899.49018MR1612389
  18. FONSECA, I., FUSCO, N., MARCELLINI, P., An existence result for a non convex variational problem via regularity, ESAIM: Control, Opt. and Calc. Var., 7 (2002), 69-96. Zbl1044.49011MR1925022
  19. FUSCO, N.- HUTCHINSON, J. E., C 1 , α partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54, 1-2 (1985), 121-143. Zbl0587.49005MR808684
  20. FUCHS, M.- MINGIONE, G., Full C 1 , α regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250. Zbl0995.49023MR1771942
  21. FAN, X.- ZHAO, D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA, 36(A) (1999), 295-318. Zbl0927.46022MR1688232
  22. GIUSTI, E., Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994. Zbl0942.49002MR1707291
  23. MANFREDI, J. J., Regularity for minima of functionals with p -growth, J. Differential Equations, 76 (1988), 203-212. Zbl0674.35008MR969420
  24. MARCELLINI, P., Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. Zbl0667.49032MR969900
  25. MARCELLINI, P., Regularity and existence of solutions of elliptic equations with p , q -growth conditions, J. Differential Equations, 90 (1991), 1-30. Zbl0724.35043MR1094446
  26. MARCELLINI, P., Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 1-25. Zbl0922.35031MR1401415
  27. MASCOLO, E.- MIGLIORINI, A. P., Everywhere regularity for vectorial functionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003), 399-418. Zbl1066.49023MR1988669
  28. RAJAGOPAL, K. R.- RŮŽIČKA, M., Mathematical modelling of electrorheological materials, Cont. Mech. Thermod., 13 (2001), 59-78. Zbl0971.76100
  29. RŮŽIČKA, M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, 329 (1999), 393-398. Zbl0954.76097MR1710119
  30. RŮŽIČKA, M., Electrorheological fluids: modeling and mathematical theory, Lecture notes in Mat.1748, Springer Verlag, Berlin, Heidelberg, New York (2000). Zbl0962.76001MR1810360
  31. STREDULINSKI, E. W., Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29 (1980), 407-413. Zbl0442.35064MR570689
  32. SERRIN, J.- ZOU, H., Symmetry of ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 148 (1999), 265-290. Zbl0940.35079MR1716665
  33. UHLENBECK, K., Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. Zbl0372.35030MR474389
  34. URAL'TSEVA, N., Quasilinear degenerate elliptic systems (Russian), Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7 (1968), 184-222. Zbl0196.12501MR244628
  35. ZHIKOV, V. V., On some variational problems, Russian J. Math. Physics, 5 (1997), 105-116. Zbl0917.49006MR1486765
  36. ZHIKOV, V. V., Meyers-type estimates for solving the non linear Stokes system, Differential Equations, 33 (1) (1997), 107-114. Zbl0911.35089MR1607245

Citations in EuDML Documents

top
  1. Sungchol Kim, Dukman Ri, C 1 , α regularity for elliptic equations with the general nonstandard growth conditions
  2. Jens Habermann, Full Regularity for Convex Integral Functionals with p ( x ) Growth in Low Dimensions
  3. Michela Eleuteri, Regularity results for a class of obstacle problems
  4. Petteri Harjulehto, Variable exponent Sobolev spaces with zero boundary values
  5. Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.