Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 6, page 1065-1087
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topProhl, Andreas. "Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system." ESAIM: Mathematical Modelling and Numerical Analysis 42.6 (2008): 1065-1087. <http://eudml.org/doc/250280>.
@article{Prohl2008,
abstract = {
The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations
to describe the flow of a viscous, incompressible, and electrically conducting fluid in
a Lipschitz domain $\Omega \subset \mathbb\{R\}^3$.
We verify convergence of iterates of different coupling and
decoupling fully discrete schemes towards weak solutions for
vanishing discretization parameters. Optimal first order of convergence is shown
in the presence of strong solutions for a splitting scheme which decouples
the computation of velocity field, pressure, and magnetic fields at
every iteration step.
},
author = {Prohl, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Magneto-hydrodynamics; discretization; FEM; fixed-point scheme; splitting-method.; fixed point scheme; splitting method; weak solutions},
language = {eng},
month = {8},
number = {6},
pages = {1065-1087},
publisher = {EDP Sciences},
title = {Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system},
url = {http://eudml.org/doc/250280},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Prohl, Andreas
TI - Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/8//
PB - EDP Sciences
VL - 42
IS - 6
SP - 1065
EP - 1087
AB -
The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations
to describe the flow of a viscous, incompressible, and electrically conducting fluid in
a Lipschitz domain $\Omega \subset \mathbb{R}^3$.
We verify convergence of iterates of different coupling and
decoupling fully discrete schemes towards weak solutions for
vanishing discretization parameters. Optimal first order of convergence is shown
in the presence of strong solutions for a splitting scheme which decouples
the computation of velocity field, pressure, and magnetic fields at
every iteration step.
LA - eng
KW - Magneto-hydrodynamics; discretization; FEM; fixed-point scheme; splitting-method.; fixed point scheme; splitting method; weak solutions
UR - http://eudml.org/doc/250280
ER -
References
top- C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci.21 (1998) 823–864.
- F. Armero and J.C. Simo, Long-time dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comp. Meth. Appl. Mech. Engrg.131 (1996) 41–90.
- L. Banas and A. Prohl, Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations. (In preparation).
- D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal.36 (1999) 1264–1290.
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer (1994).
- L. Cattabriga, Su un problema al contorno relativo al sistemo di equazioni di Stokes. Rend. Sem Mat. Univ. Padova31 (1961) 308–340.
- Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal.37 (2000) 1542–1570.
- A.J. Chorin, Numercial solution of the Navier-Stokes equations. Math. Comp.22 (1968) 745–762.
- M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math.93 (2002) 239–277.
- V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds. Ann. Math. Pura Appl.122 (1979) 159–198.
- J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math.87 (2000) 83–111.
- J.-F. Gerbeau, C. Le Bris and T. Lelievre, Mathematical methods for the magnetohydrodynamics of liquid crystals. Oxford Science Publication (2006).
- V. Girault, R.H. Nochetto and R. Scott, Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl.84 (2005) 279–330.
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Springer (1986).
- M.D. Gunzburger, A.J. Meir and J.S. Peterson, On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comp.56 (1991) 523–563.
- U. Hasler, A. Schneebeli and D. Schötzau, Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math.51 (2004) 19–45.
- J.G. Heywood and R. Rannacher, Finite element solution of the nonstationary Navier-Stokes problem, I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal.19 (1982) 275–311.
- R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11 (2002) 237–339.
- T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comp. Meth. Appl. Mech. Eng.59 (1986) 85–99.
- F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sec. IA36 (1989) 479–490.
- P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, New York (2003).
- A. Prohl, Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations. Teubner-Verlag, Stuttgart (1997).
- A. Prohl, On the pollution effect of quasi-compressibility methods in magneto-hydrodynamics and reactive flows. Math. Meth. Appl. Sci.22 (1999) 1555–1584.
- A. Prohl, On pressure approximation via projection methods for nonstationary incompressible Navier-Stokes equations. SIAM J. Numer. Anal. (to appear).
- D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math.96 (2004) 771–800.
- M. Sermange and R. Temam, Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math.36 (1983) 635–664.
- R. Temam, Sur l'approximation de la solutoin des equations de Navier-Stokes par la méthode de pas fractionnaires II. Arch. Rat. Mech. Anal.33 (1969) 377–385.
- J. Zhao, Analysis of finite element approximation for time-dependent Maxwell problems. Math. Comp.73 (2003) 1089–1105.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.