A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations
Yun-Bo Yang; Yao-Lin Jiang; Qiong-Xiang Kong
Applications of Mathematics (2019)
- Volume: 64, Issue: 5, page 531-556
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYang, Yun-Bo, Jiang, Yao-Lin, and Kong, Qiong-Xiang. "A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations." Applications of Mathematics 64.5 (2019): 531-556. <http://eudml.org/doc/294421>.
@article{Yang2019,
abstract = {A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order time discretization of a perturbed system which approximates the MHD system. The main results are that the convergence for the velocity and the magnetic field are strongly second-order in time while that for the pressure is strongly first-order in time. Some numerical tests are performed to illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.},
author = {Yang, Yun-Bo, Jiang, Yao-Lin, Kong, Qiong-Xiang},
journal = {Applications of Mathematics},
keywords = {magnetohydrodynamics equations; pressure segregation method; higher order scheme; stability; error estimate},
language = {eng},
number = {5},
pages = {531-556},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations},
url = {http://eudml.org/doc/294421},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Yang, Yun-Bo
AU - Jiang, Yao-Lin
AU - Kong, Qiong-Xiang
TI - A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 5
SP - 531
EP - 556
AB - A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order time discretization of a perturbed system which approximates the MHD system. The main results are that the convergence for the velocity and the magnetic field are strongly second-order in time while that for the pressure is strongly first-order in time. Some numerical tests are performed to illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.
LA - eng
KW - magnetohydrodynamics equations; pressure segregation method; higher order scheme; stability; error estimate
UR - http://eudml.org/doc/294421
ER -
References
top- Adams, R. A., Fournier, J. J. F., 10.1016/S0079-8169(03)80012-0, Pure and Applied Mathematics 140, Academic press, New York (2003). (2003) Zbl1098.46001MR2424078DOI10.1016/S0079-8169(03)80012-0
- An, R., Li, Y., 10.1016/j.apnum.2016.10.010, Appl. Numer. Math. 112 (2017), 167-181. (2017) Zbl06657058MR3574248DOI10.1016/j.apnum.2016.10.010
- Armero, F., Simo, J. C., 10.1016/0045-7825(95)00931-0, Comput. Methods Appl. Mech. Eng. 131 (1996), 41-90. (1996) Zbl0888.76042MR1393572DOI10.1016/0045-7825(95)00931-0
- Badia, S., Codina, R., Planas, R., 10.1016/j.jcp.2012.09.031, J. Comput. Phys. 234 (2013), 399-416. (2013) Zbl1284.76248MR2999784DOI10.1016/j.jcp.2012.09.031
- Badia, S., Planas, R., Gutiérrez-Santacreu, J. V., 10.1002/nme.4392, Int. J. Numer. Methods Eng. 93 (2013), 302-328. (2013) Zbl1352.76122MR3008267DOI10.1002/nme.4392
- Blasco, J., Codina, R., 10.1016/j.apnum.2004.02.004, Appl. Numer. Math. 51 (2004), 1-17. (2004) Zbl1126.76339MR2083322DOI10.1016/j.apnum.2004.02.004
- Blasco, J., Codina, R., Huerta, A., 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5, Int. J. Numer. Methods Fluids 28 (1998), 1391-1419. (1998) Zbl0935.76041MR1663560DOI10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5
- Choi, H., Shen, J., 10.1007/s11425-016-0280-5, Sci. China, Math. 59 (2016), 1495-1510. (2016) Zbl1388.76224MR3528499DOI10.1007/s11425-016-0280-5
- Chorin, A. J., 10.2307/2004575, Math. Comput. 22 (1968), 745-762. (1968) Zbl0198.50103MR0242392DOI10.2307/2004575
- Gerbeau, J.-F., 10.1007/s002110000193, Numer. Math. 87 (2000), 83-111. (2000) Zbl0988.76050MR1800155DOI10.1007/s002110000193
- Gerbeau, J.-F., Bris, C. Le, Lelièvre, T., 10.1093/acprof:oso/9780198566656.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2006). (2006) Zbl1107.76001MR2289481DOI10.1093/acprof:oso/9780198566656.001.0001
- Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5, Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
- Greif, C., Li, D., Schötzau, D., Wei, X., 10.1016/j.cma.2010.05.007, Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. (2010) Zbl1231.76146MR2740762DOI10.1016/j.cma.2010.05.007
- Guermond, J. L., Minev, P., Shen, J., 10.1016/j.cma.2005.10.010, Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. (2006) Zbl1122.76072MR2250931DOI10.1016/j.cma.2005.10.010
- Guermond, J. L., Shen, J., 10.1016/j.jcp.2003.07.009, J. Comput. Phys. 192 (2003), 262-276. (2003) Zbl1032.76529MR2045709DOI10.1016/j.jcp.2003.07.009
- Guermond, J. L., Shen, J., 10.1137/S0036142901395400, SIAM J. Numer. Anal. 41 (2003), 112-134. (2003) Zbl1130.76395MR1974494DOI10.1137/S0036142901395400
- Guermond, J. L., Shen, J., 10.1090/S0025-5718-03-01621-1, Math. Comput. 73 (2004), 1719-1737. (2004) Zbl1093.76050MR2059733DOI10.1090/S0025-5718-03-01621-1
- Gunzburger, M. D., Meir, A. J., Peterson, J. S., 10.2307/2008394, Math. Comput. 56 (1991), 523-563. (1991) Zbl0731.76094MR1066834DOI10.2307/2008394
- Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-265. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
- Jiang, Y.-L., Yang, Y.-B., 10.1515/cmam-2017-0021, Comput. Methods Appl. Math. 18 (2018), 275-296. (2018) Zbl1391.76337MR3776046DOI10.1515/cmam-2017-0021
- Layton, W., Tran, H., Trenchea, C., 10.1002/num.21857, Numer. Methods Partial Differ. Equations 30 (2014), 1083-1102. (2014) Zbl1364.76088MR3200267DOI10.1002/num.21857
- Linke, A., Neilan, M., Rebholz, L. G., Wilson, N. E., 10.1515/jnma-2016-1024, J. Numer. Math. 25 (2017), 229-248. (2017) Zbl06857557MR3767412DOI10.1515/jnma-2016-1024
- Prohl, A., 10.1051/m2an:2008034, ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. (2008) Zbl1149.76029MR2473320DOI10.1051/m2an:2008034
- Qian, Y., Zhang, T., 10.1007/s10492-016-0133-y, Appl. Math., Praha 61 (2016), 299-315. (2016) Zbl06587854MR3502113DOI10.1007/s10492-016-0133-y
- Ravindran, S. S., 10.1080/01630563.2016.1181651, Numer. Funct. Anal. Optim. 37 (2016), 990-1020. (2016) Zbl1348.76189MR3532388DOI10.1080/01630563.2016.1181651
- Schmidt, P. G., A Galerkin method for time-dependent MHD flow with nonideal boundaries, Commun. Appl. Anal. 3 (1999), 383-398. (1999) Zbl0931.76099MR1696344
- Schötzau, D., 10.1007/s00211-003-0487-4, Numer. Math. 96 (2004), 771-800. (2004) Zbl1098.76043MR2036365DOI10.1007/s00211-003-0487-4
- Sermange, M., Temam, R., 10.1002/cpa.3160360506, Commun. Pure Appl. Math. 36 (1983), 635-664. (1983) Zbl0524.76099MR0716200DOI10.1002/cpa.3160360506
- Shen, J., 10.1137/0729004, SIAM J. Numer. Anal. 29 (1992), 57-77. (1992) Zbl0741.76051MR1149084DOI10.1137/0729004
- Shen, J., 10.1090/S0025-5718-96-00750-8, Math. Comput. 65 (1996), 1039-1065. (1996) Zbl0855.76049MR1348047DOI10.1090/S0025-5718-96-00750-8
- Shen, J., Yang, X., 10.3934/dcdsb.2007.8.663, Discrete Contin. Dyn. Syst., Ser. B. 8 (2007), 663-676. (2007) Zbl1220.76046MR2328729DOI10.3934/dcdsb.2007.8.663
- Simo, J. C., Armero, F., 10.1016/0045-7825(94)90042-6, Comput. Methods Appl. Mech. Eng. 111 (1994), 111-154. (1994) Zbl0846.76075MR1259618DOI10.1016/0045-7825(94)90042-6
- Temam, R., 10.24033/bsmf.1662, Bull. Soc. Math. Fr. 96 (1968), 115-152 French. (1968) Zbl0181.18903MR0237972DOI10.24033/bsmf.1662
- Trenchea, C., 10.1016/j.aml.2013.06.017, Appl. Math. Lett. 27 (2014), 97-100. (2014) Zbl1311.76096MR3111615DOI10.1016/j.aml.2013.06.017
- Yang, Y.-B., Jiang, Y.-L., 10.1515/cmam-2016-0006, Comput. Methods Appl. Math. 16 (2016), 321-344. (2016) Zbl1336.65155MR3483620DOI10.1515/cmam-2016-0006
- Yang, Y.-B., Jiang, Y.-L., 10.1080/00207160.2017.1294688, Int. J. Comput. Math. 95 (2018), 686-709. (2018) Zbl1387.65108MR3760370DOI10.1080/00207160.2017.1294688
- Yang, Y.-B., Jiang, Y.-L., 10.1007/s11075-017-0389-7, Numer. Algorithms 78 (2018), 569-597. (2018) Zbl1402.65139MR3803360DOI10.1007/s11075-017-0389-7
- Yuksel, G., Ingram, R., Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model 10 (2013), 74-98. (2013) Zbl1266.76066MR3011862
- Yuksel, G., Isik, O. R., 10.1016/j.apm.2014.10.007, Appl. Math. Modelling 39 (2015), 1889-1898 9999DOI99999 10.1016/j.apm.2014.10.007 . (2015) MR3325585DOI10.1016/j.apm.2014.10.007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.