A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations

Yun-Bo Yang; Yao-Lin Jiang; Qiong-Xiang Kong

Applications of Mathematics (2019)

  • Volume: 64, Issue: 5, page 531-556
  • ISSN: 0862-7940

Abstract

top
A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order time discretization of a perturbed system which approximates the MHD system. The main results are that the convergence for the velocity and the magnetic field are strongly second-order in time while that for the pressure is strongly first-order in time. Some numerical tests are performed to illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.

How to cite

top

Yang, Yun-Bo, Jiang, Yao-Lin, and Kong, Qiong-Xiang. "A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations." Applications of Mathematics 64.5 (2019): 531-556. <http://eudml.org/doc/294421>.

@article{Yang2019,
abstract = {A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order time discretization of a perturbed system which approximates the MHD system. The main results are that the convergence for the velocity and the magnetic field are strongly second-order in time while that for the pressure is strongly first-order in time. Some numerical tests are performed to illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.},
author = {Yang, Yun-Bo, Jiang, Yao-Lin, Kong, Qiong-Xiang},
journal = {Applications of Mathematics},
keywords = {magnetohydrodynamics equations; pressure segregation method; higher order scheme; stability; error estimate},
language = {eng},
number = {5},
pages = {531-556},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations},
url = {http://eudml.org/doc/294421},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Yang, Yun-Bo
AU - Jiang, Yao-Lin
AU - Kong, Qiong-Xiang
TI - A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 5
SP - 531
EP - 556
AB - A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order time discretization of a perturbed system which approximates the MHD system. The main results are that the convergence for the velocity and the magnetic field are strongly second-order in time while that for the pressure is strongly first-order in time. Some numerical tests are performed to illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.
LA - eng
KW - magnetohydrodynamics equations; pressure segregation method; higher order scheme; stability; error estimate
UR - http://eudml.org/doc/294421
ER -

References

top
  1. Adams, R. A., Fournier, J. J. F., 10.1016/S0079-8169(03)80012-0, Pure and Applied Mathematics 140, Academic press, New York (2003). (2003) Zbl1098.46001MR2424078DOI10.1016/S0079-8169(03)80012-0
  2. An, R., Li, Y., 10.1016/j.apnum.2016.10.010, Appl. Numer. Math. 112 (2017), 167-181. (2017) Zbl06657058MR3574248DOI10.1016/j.apnum.2016.10.010
  3. Armero, F., Simo, J. C., 10.1016/0045-7825(95)00931-0, Comput. Methods Appl. Mech. Eng. 131 (1996), 41-90. (1996) Zbl0888.76042MR1393572DOI10.1016/0045-7825(95)00931-0
  4. Badia, S., Codina, R., Planas, R., 10.1016/j.jcp.2012.09.031, J. Comput. Phys. 234 (2013), 399-416. (2013) Zbl1284.76248MR2999784DOI10.1016/j.jcp.2012.09.031
  5. Badia, S., Planas, R., Gutiérrez-Santacreu, J. V., 10.1002/nme.4392, Int. J. Numer. Methods Eng. 93 (2013), 302-328. (2013) Zbl1352.76122MR3008267DOI10.1002/nme.4392
  6. Blasco, J., Codina, R., 10.1016/j.apnum.2004.02.004, Appl. Numer. Math. 51 (2004), 1-17. (2004) Zbl1126.76339MR2083322DOI10.1016/j.apnum.2004.02.004
  7. Blasco, J., Codina, R., Huerta, A., 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5, Int. J. Numer. Methods Fluids 28 (1998), 1391-1419. (1998) Zbl0935.76041MR1663560DOI10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5
  8. Choi, H., Shen, J., 10.1007/s11425-016-0280-5, Sci. China, Math. 59 (2016), 1495-1510. (2016) Zbl1388.76224MR3528499DOI10.1007/s11425-016-0280-5
  9. Chorin, A. J., 10.2307/2004575, Math. Comput. 22 (1968), 745-762. (1968) Zbl0198.50103MR0242392DOI10.2307/2004575
  10. Gerbeau, J.-F., 10.1007/s002110000193, Numer. Math. 87 (2000), 83-111. (2000) Zbl0988.76050MR1800155DOI10.1007/s002110000193
  11. Gerbeau, J.-F., Bris, C. Le, Lelièvre, T., 10.1093/acprof:oso/9780198566656.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2006). (2006) Zbl1107.76001MR2289481DOI10.1093/acprof:oso/9780198566656.001.0001
  12. Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5, Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
  13. Greif, C., Li, D., Schötzau, D., Wei, X., 10.1016/j.cma.2010.05.007, Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. (2010) Zbl1231.76146MR2740762DOI10.1016/j.cma.2010.05.007
  14. Guermond, J. L., Minev, P., Shen, J., 10.1016/j.cma.2005.10.010, Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. (2006) Zbl1122.76072MR2250931DOI10.1016/j.cma.2005.10.010
  15. Guermond, J. L., Shen, J., 10.1016/j.jcp.2003.07.009, J. Comput. Phys. 192 (2003), 262-276. (2003) Zbl1032.76529MR2045709DOI10.1016/j.jcp.2003.07.009
  16. Guermond, J. L., Shen, J., 10.1137/S0036142901395400, SIAM J. Numer. Anal. 41 (2003), 112-134. (2003) Zbl1130.76395MR1974494DOI10.1137/S0036142901395400
  17. Guermond, J. L., Shen, J., 10.1090/S0025-5718-03-01621-1, Math. Comput. 73 (2004), 1719-1737. (2004) Zbl1093.76050MR2059733DOI10.1090/S0025-5718-03-01621-1
  18. Gunzburger, M. D., Meir, A. J., Peterson, J. S., 10.2307/2008394, Math. Comput. 56 (1991), 523-563. (1991) Zbl0731.76094MR1066834DOI10.2307/2008394
  19. Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-265. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
  20. Jiang, Y.-L., Yang, Y.-B., 10.1515/cmam-2017-0021, Comput. Methods Appl. Math. 18 (2018), 275-296. (2018) Zbl1391.76337MR3776046DOI10.1515/cmam-2017-0021
  21. Layton, W., Tran, H., Trenchea, C., 10.1002/num.21857, Numer. Methods Partial Differ. Equations 30 (2014), 1083-1102. (2014) Zbl1364.76088MR3200267DOI10.1002/num.21857
  22. Linke, A., Neilan, M., Rebholz, L. G., Wilson, N. E., 10.1515/jnma-2016-1024, J. Numer. Math. 25 (2017), 229-248. (2017) Zbl06857557MR3767412DOI10.1515/jnma-2016-1024
  23. Prohl, A., 10.1051/m2an:2008034, ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. (2008) Zbl1149.76029MR2473320DOI10.1051/m2an:2008034
  24. Qian, Y., Zhang, T., 10.1007/s10492-016-0133-y, Appl. Math., Praha 61 (2016), 299-315. (2016) Zbl06587854MR3502113DOI10.1007/s10492-016-0133-y
  25. Ravindran, S. S., 10.1080/01630563.2016.1181651, Numer. Funct. Anal. Optim. 37 (2016), 990-1020. (2016) Zbl1348.76189MR3532388DOI10.1080/01630563.2016.1181651
  26. Schmidt, P. G., A Galerkin method for time-dependent MHD flow with nonideal boundaries, Commun. Appl. Anal. 3 (1999), 383-398. (1999) Zbl0931.76099MR1696344
  27. Schötzau, D., 10.1007/s00211-003-0487-4, Numer. Math. 96 (2004), 771-800. (2004) Zbl1098.76043MR2036365DOI10.1007/s00211-003-0487-4
  28. Sermange, M., Temam, R., 10.1002/cpa.3160360506, Commun. Pure Appl. Math. 36 (1983), 635-664. (1983) Zbl0524.76099MR0716200DOI10.1002/cpa.3160360506
  29. Shen, J., 10.1137/0729004, SIAM J. Numer. Anal. 29 (1992), 57-77. (1992) Zbl0741.76051MR1149084DOI10.1137/0729004
  30. Shen, J., 10.1090/S0025-5718-96-00750-8, Math. Comput. 65 (1996), 1039-1065. (1996) Zbl0855.76049MR1348047DOI10.1090/S0025-5718-96-00750-8
  31. Shen, J., Yang, X., 10.3934/dcdsb.2007.8.663, Discrete Contin. Dyn. Syst., Ser. B. 8 (2007), 663-676. (2007) Zbl1220.76046MR2328729DOI10.3934/dcdsb.2007.8.663
  32. Simo, J. C., Armero, F., 10.1016/0045-7825(94)90042-6, Comput. Methods Appl. Mech. Eng. 111 (1994), 111-154. (1994) Zbl0846.76075MR1259618DOI10.1016/0045-7825(94)90042-6
  33. Temam, R., 10.24033/bsmf.1662, Bull. Soc. Math. Fr. 96 (1968), 115-152 French. (1968) Zbl0181.18903MR0237972DOI10.24033/bsmf.1662
  34. Trenchea, C., 10.1016/j.aml.2013.06.017, Appl. Math. Lett. 27 (2014), 97-100. (2014) Zbl1311.76096MR3111615DOI10.1016/j.aml.2013.06.017
  35. Yang, Y.-B., Jiang, Y.-L., 10.1515/cmam-2016-0006, Comput. Methods Appl. Math. 16 (2016), 321-344. (2016) Zbl1336.65155MR3483620DOI10.1515/cmam-2016-0006
  36. Yang, Y.-B., Jiang, Y.-L., 10.1080/00207160.2017.1294688, Int. J. Comput. Math. 95 (2018), 686-709. (2018) Zbl1387.65108MR3760370DOI10.1080/00207160.2017.1294688
  37. Yang, Y.-B., Jiang, Y.-L., 10.1007/s11075-017-0389-7, Numer. Algorithms 78 (2018), 569-597. (2018) Zbl1402.65139MR3803360DOI10.1007/s11075-017-0389-7
  38. Yuksel, G., Ingram, R., Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model 10 (2013), 74-98. (2013) Zbl1266.76066MR3011862
  39. Yuksel, G., Isik, O. R., 10.1016/j.apm.2014.10.007, Appl. Math. Modelling 39 (2015), 1889-1898 9999DOI99999 10.1016/j.apm.2014.10.007 . (2015) MR3325585DOI10.1016/j.apm.2014.10.007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.