Further properties of 1-sequence-covering maps

Tran Van An; Luong Quoc Tuyen

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 3, page 477-484
  • ISSN: 0010-2628

Abstract

top
Some relationships between 1 -sequence-covering maps and weak-open maps or sequence-covering s -maps are discussed. These results are used to generalize a result from Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.

How to cite

top

An, Tran Van, and Tuyen, Luong Quoc. "Further properties of 1-sequence-covering maps." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 477-484. <http://eudml.org/doc/250300>.

@article{An2008,
abstract = {Some relationships between $1$-sequence-covering maps and weak-open maps or sequence-covering $s$-maps are discussed. These results are used to generalize a result from Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.},
author = {An, Tran Van, Tuyen, Luong Quoc},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weak base; $sn$-network; sequence-covering; $1$-sequence-covering; weak-open; $\pi $-$s$-map; sequence-covering map; weak base; -network},
language = {eng},
number = {3},
pages = {477-484},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Further properties of 1-sequence-covering maps},
url = {http://eudml.org/doc/250300},
volume = {49},
year = {2008},
}

TY - JOUR
AU - An, Tran Van
AU - Tuyen, Luong Quoc
TI - Further properties of 1-sequence-covering maps
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 477
EP - 484
AB - Some relationships between $1$-sequence-covering maps and weak-open maps or sequence-covering $s$-maps are discussed. These results are used to generalize a result from Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.
LA - eng
KW - weak base; $sn$-network; sequence-covering; $1$-sequence-covering; weak-open; $\pi $-$s$-map; sequence-covering map; weak base; -network
UR - http://eudml.org/doc/250300
ER -

References

top
  1. Arhangel'skii A.V., Mappings and spaces, Russian Math. Surveys 21 4 (1966), 115-162. (1966) MR0227950
  2. Davis S.W., More on Cauchy conditions, Topology Proc. 9 (1984), 31-36. (1984) Zbl0561.54020MR0781549
  3. Engelking R., General Topology, PWN-Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
  4. Franklin S.P., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. (1965) Zbl0132.17802MR0180954
  5. Ge X., Spaces with a locally countable s n -network, Lobachevskii J. Math. 26 (2007), 33-49. (2007) Zbl1140.54009MR2396700
  6. Ge Y., 10.2298/PIM0374121G, Publ. Inst. Math. (Beograd) (N.S.) 74 (88) (2003), 121-128. (2003) MR2066998DOI10.2298/PIM0374121G
  7. Ge Y., Spaces with countable s n -networks, Comment. Math. Univ. Carolin. 45 1 (2004), 169-176. (2004) Zbl1098.54025MR2076868
  8. Gruenhage G., Michael E., Tanaka Y., 10.2140/pjm.1984.113.303, Pacific J. Math. 113 2 (1984), 303-332. (1984) Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
  9. Ikeda Y., Tanaka Y., Spaces having star-countable k -networks, Topology Proc. 18 (1993), 107-132. (1993) Zbl0829.54018MR1305126
  10. Ikeda Y., Liu C., Tanaka Y., 10.1016/S0166-8641(01)00145-6, Topology Appl. 122 1-2 (2002), 237-252. (2002) Zbl0994.54015MR1919303DOI10.1016/S0166-8641(01)00145-6
  11. Li Z., 10.1155/IJMMS.2005.1101, Int. J. Math. Math. Sci. 7 (2005), 1101-1107. (2005) Zbl1082.54023MR2170507DOI10.1155/IJMMS.2005.1101
  12. Li Z., Lin S., On the weak-open images of metric spaces, Czechoslovak Math. J. 54 (2004), 939-400. (2004) Zbl1080.54509MR2059259
  13. Lin S., Generalized Metric Spaces and Mappings, Chinese Science Press, Beijing, 1995 (Chinese). MR1375020
  14. Lin S., On sequence-covering s -mappings, Adv. Math. (China) 25 6 (1996), 548-551. (1996) Zbl0864.54026MR1453163
  15. Lin S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. Zbl1004.54001MR1939779
  16. Lin S., Yan P., 10.1016/S0166-8641(99)00163-7, Topology Appl. 109 (2001), 301-314. (2001) Zbl0966.54012MR1807392DOI10.1016/S0166-8641(99)00163-7
  17. Liu C., 10.1016/j.topol.2004.11.008, Topology Appl. 150 (2005), 91-99. (2005) Zbl1081.54026MR2133670DOI10.1016/j.topol.2004.11.008
  18. O'Meara P., 10.2307/2037695, Proc. Amer. Math. Soc. 29 (1971), 183-189. (1971) Zbl0214.21105MR0276919DOI10.2307/2037695
  19. Michael E., 0 -spaces, J. Math. Mech. 15 (1966), 983-1002. (1966) MR0206907
  20. Siwiec F., 10.2140/pjm.1974.52.233, Pacific J. Math. 52 (1974), 233-245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
  21. Tanaka Y., Point-countable covers and k -networks, Topology Proc. 12 (1987), 327-349. (1987) Zbl0676.54035MR0991759
  22. Tanaka Y., Theory of k -networks II, Questions Answers Gen. Topology 19 (2001), 27-46. (2001) Zbl0970.54023MR1815344
  23. Tanaka Y., Ge Y., Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32 1 (2006), 99-117. (2006) Zbl1102.54034MR2202355
  24. Yan P., On strong sequence-covering compact mappings, Northeastern Math. J. 14 (1998), 341-344. (1998) Zbl0927.54030MR1685267
  25. Xia S., Characterizations of certain g -first countable spaces, Adv. Math. (China) 29 (2000), 61-64. (2000) Zbl0999.54010MR1769127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.