Remarks on sequence-covering maps
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 4, page 645-650
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTuyen, Luong Quoc. "Remarks on sequence-covering maps." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 645-650. <http://eudml.org/doc/252468>.
@article{Tuyen2012,
abstract = {In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].},
author = {Tuyen, Luong Quoc},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$g$-metrizable space; weak base; $sn$-network; compact map; boundary-compact map; sequence-covering map; 1-sequence-covering map; weak-open map; closed map; -metrizable space; weak base; -network; boundary-compact map; 1-sequence-covering map; weak-open map},
language = {eng},
number = {4},
pages = {645-650},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on sequence-covering maps},
url = {http://eudml.org/doc/252468},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Tuyen, Luong Quoc
TI - Remarks on sequence-covering maps
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 645
EP - 650
AB - In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].
LA - eng
KW - $g$-metrizable space; weak base; $sn$-network; compact map; boundary-compact map; sequence-covering map; 1-sequence-covering map; weak-open map; closed map; -metrizable space; weak base; -network; boundary-compact map; 1-sequence-covering map; weak-open map
UR - http://eudml.org/doc/252468
ER -
References
top- An T.V., Tuyen L.Q., Further properties of -sequence-covering maps, Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477–484. Zbl1212.54092MR2490441
- An T.V., Tuyen L.Q., On -images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, (2011)(to appear). MR2965962
- Arhangel'skii A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR0227950
- Engelking R., General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989. MR1039321
- Franklin S.P., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. Zbl0168.43502MR0180954
- Ge Y., 10.2298/PIM0374121G, Publ. Inst. Math. (Beograd) (N.S) 74 (88) (2003), 121–128. Zbl1245.54016MR2066998DOI10.2298/PIM0374121G
- Lee K.B., 10.2140/pjm.1976.65.113, Pacific J. Math. 65 (1976), no. 1, 113–118. Zbl0359.54022MR0423307DOI10.2140/pjm.1976.65.113
- Lin F.C., Lin S., On sequence-covering boundary compact maps of metric spaces, Adv. Math. (China) 39 (2010), no. 1, 71–78. MR2667123
- Lin F.C., Lin S., Sequence-covering maps on generalized metric spaces, arXiv: 1106.3806.
- Lin S., On sequence-covering -mappings, Adv. Math. (China) 25 (1996), no. 6, 548–551. Zbl0864.54026MR1453163
- Lin S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. Zbl1004.54001MR1939779
- Lin S., Liu C., 10.1016/S0166-8641(96)00043-0, Topology Appl. 74 (1996), 51–60. Zbl0869.54036MR1425925DOI10.1016/S0166-8641(96)00043-0
- Lin S., Yan P., 10.1016/S0166-8641(99)00163-7, Topology Appl. 109 (2001), 301–314. Zbl0966.54012MR1807392DOI10.1016/S0166-8641(99)00163-7
- Lin S., Tanaka Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79–86. Zbl0817.54025MR1293119DOI10.1016/0166-8641(94)90101-5
- Liu C., 10.1016/j.topol.2004.11.008, Topology Appl. 150 (2005), 91–99. Zbl1081.54026MR2133670DOI10.1016/j.topol.2004.11.008
- Siwiec F., 10.1016/0016-660X(71)90120-6, General Topology Appl. 1 (1971), 143–154. MR0288737DOI10.1016/0016-660X(71)90120-6
- Siwiec F., 10.2140/pjm.1974.52.233, Pacific J. Math. 52 (1974), 233–245. Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
- Xia S., Characterizations of certain -first countable spaces, Adv. Math. 29 (2000), 61–64. Zbl0999.54010MR1769127
- Yan P., Lin S., Point-countable -networks, -network and -spaces, Topology Proc. 24 (1999), 345–354. Zbl0966.54014MR1802697
- Yan P., Lin S., CWC, -mappings and metrization theorems, Adv. Math. (China) 36 (2007), no. 2, 153–158. MR2362727
- Yan P.F., Lin S., Jiang S.L., Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica 47 (2004), no. 1, 87–90. MR2050500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.