Remarks on sequence-covering maps

Luong Quoc Tuyen

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 4, page 645-650
  • ISSN: 0010-2628

Abstract

top
In this paper, we prove that each sequence-covering and boundary-compact map on g -metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].

How to cite

top

Tuyen, Luong Quoc. "Remarks on sequence-covering maps." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 645-650. <http://eudml.org/doc/252468>.

@article{Tuyen2012,
abstract = {In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].},
author = {Tuyen, Luong Quoc},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$g$-metrizable space; weak base; $sn$-network; compact map; boundary-compact map; sequence-covering map; 1-sequence-covering map; weak-open map; closed map; -metrizable space; weak base; -network; boundary-compact map; 1-sequence-covering map; weak-open map},
language = {eng},
number = {4},
pages = {645-650},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on sequence-covering maps},
url = {http://eudml.org/doc/252468},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Tuyen, Luong Quoc
TI - Remarks on sequence-covering maps
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 645
EP - 650
AB - In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].
LA - eng
KW - $g$-metrizable space; weak base; $sn$-network; compact map; boundary-compact map; sequence-covering map; 1-sequence-covering map; weak-open map; closed map; -metrizable space; weak base; -network; boundary-compact map; 1-sequence-covering map; weak-open map
UR - http://eudml.org/doc/252468
ER -

References

top
  1. An T.V., Tuyen L.Q., Further properties of 1 -sequence-covering maps, Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477–484. Zbl1212.54092MR2490441
  2. An T.V., Tuyen L.Q., On π -images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, (2011)(to appear). MR2965962
  3. Arhangel'skii A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR0227950
  4. Engelking R., General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989. MR1039321
  5. Franklin S.P., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. Zbl0168.43502MR0180954
  6. Ge Y., 10.2298/PIM0374121G, Publ. Inst. Math. (Beograd) (N.S) 74 (88) (2003), 121–128. Zbl1245.54016MR2066998DOI10.2298/PIM0374121G
  7. Lee K.B., 10.2140/pjm.1976.65.113, Pacific J. Math. 65 (1976), no. 1, 113–118. Zbl0359.54022MR0423307DOI10.2140/pjm.1976.65.113
  8. Lin F.C., Lin S., On sequence-covering boundary compact maps of metric spaces, Adv. Math. (China) 39 (2010), no. 1, 71–78. MR2667123
  9. Lin F.C., Lin S., Sequence-covering maps on generalized metric spaces, arXiv: 1106.3806. 
  10. Lin S., On sequence-covering s -mappings, Adv. Math. (China) 25 (1996), no. 6, 548–551. Zbl0864.54026MR1453163
  11. Lin S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. Zbl1004.54001MR1939779
  12. Lin S., Liu C., 10.1016/S0166-8641(96)00043-0, Topology Appl. 74 (1996), 51–60. Zbl0869.54036MR1425925DOI10.1016/S0166-8641(96)00043-0
  13. Lin S., Yan P., 10.1016/S0166-8641(99)00163-7, Topology Appl. 109 (2001), 301–314. Zbl0966.54012MR1807392DOI10.1016/S0166-8641(99)00163-7
  14. Lin S., Tanaka Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79–86. Zbl0817.54025MR1293119DOI10.1016/0166-8641(94)90101-5
  15. Liu C., 10.1016/j.topol.2004.11.008, Topology Appl. 150 (2005), 91–99. Zbl1081.54026MR2133670DOI10.1016/j.topol.2004.11.008
  16. Siwiec F., 10.1016/0016-660X(71)90120-6, General Topology Appl. 1 (1971), 143–154. MR0288737DOI10.1016/0016-660X(71)90120-6
  17. Siwiec F., 10.2140/pjm.1974.52.233, Pacific J. Math. 52 (1974), 233–245. Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
  18. Xia S., Characterizations of certain g -first countable spaces, Adv. Math. 29 (2000), 61–64. Zbl0999.54010MR1769127
  19. Yan P., Lin S., Point-countable k -networks, c s * -network and α 4 -spaces, Topology Proc. 24 (1999), 345–354. Zbl0966.54014MR1802697
  20. Yan P., Lin S., CWC, -mappings and metrization theorems, Adv. Math. (China) 36 (2007), no. 2, 153–158. MR2362727
  21. Yan P.F., Lin S., Jiang S.L., Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica 47 (2004), no. 1, 87–90. MR2050500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.