On the weak-open images of metric spaces
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 2, page 393-400
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Zhaowen, and Lin, Shou. "On the weak-open images of metric spaces." Czechoslovak Mathematical Journal 54.2 (2004): 393-400. <http://eudml.org/doc/30868>.
@article{Li2004,
abstract = {In this paper, we give characterizations of certain weak-open images of metric spaces.},
author = {Li, Zhaowen, Lin, Shou},
journal = {Czechoslovak Mathematical Journal},
keywords = {$g$-metrizable spaces; weak-bases; weak-open mappings; $\sigma $-mappings; $\pi $-mappings; $cs$-mappings; -metrizable spaces; weak-bases; -mappings; -mappings; -mappings},
language = {eng},
number = {2},
pages = {393-400},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the weak-open images of metric spaces},
url = {http://eudml.org/doc/30868},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Li, Zhaowen
AU - Lin, Shou
TI - On the weak-open images of metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 393
EP - 400
AB - In this paper, we give characterizations of certain weak-open images of metric spaces.
LA - eng
KW - $g$-metrizable spaces; weak-bases; weak-open mappings; $\sigma $-mappings; $\pi $-mappings; $cs$-mappings; -metrizable spaces; weak-bases; -mappings; -mappings; -mappings
UR - http://eudml.org/doc/30868
ER -
References
top- On some results concerning topological spaces and their continuous mappings, Proc. Sym. Gen. Top. Prague, 1961, pp. 41–54. (1961) MR0145472
- 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1966), 115–162. (1966) MR0227950DOI10.1070/RM1966v021n04ABEH004169
- 10.2140/pjm.1974.52.233, Pacific J. Math. 52 (1974), 233–245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
- Characterizations of certain -first countable spaces, Adv. Math. 29 (2000), 61–64. (2000) Zbl0999.54010MR1769127
- Certain -images of locally separable metric spaces, Q A in Gen. Top. 14 (1996), 217–231. (1996) MR1403347
- Symmetric spaces, -developable space and -metrizable space, Math. Japon. 36 (1991), 71–84. (1991) MR1093356
- Spaces with compact-countable -networks, Math. Japon. 49 (1999), 199–205. (1999) MR1687583
- On -metrizability, Pacific J. Math. 98 (1982), 327–332. (1982) Zbl0478.54025MR0650013
- 10.1016/S0166-8641(97)00031-X, Topology Appl. 81 (1997), 185–196. (1997) Zbl0885.54019MR1485766DOI10.1016/S0166-8641(97)00031-X
- On -metrizable spaces, Chinese Ann. Math. 13 (1992), 403–409. (1992) Zbl0770.54030MR1190593
- -metrizability and , Topology Appl. 60 (1994), 185–189. (1994) MR1302472
- Star-countable -networks, compact-countable -networks, and related results, Houston J. Math. 24 (1998), 655–670. (1998) MR1686632
- Generalized Metric Spaces and Mappings, Chinese scientific publ., Beijing, 1995. (1995)
- On sequence-covering -mappings, Adv. Math. 25 (1996), 548–551. (1996) Zbl0864.54026MR1453163
- 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79–86. (1994) MR1293119DOI10.1016/0166-8641(94)90101-5
- On -mappings, Northeast. Math.J. 9 (1993), 521–524. (1993) MR1274005
- On spaces with a star-countable -network, Houston J. Math. 23 (1997), 45–56. (1997) Zbl0887.54023MR1688687
- 10.2140/pjm.1984.113.303, Pacific J. Math. 113 (1984), 303–332. (1984) MR0749538DOI10.2140/pjm.1984.113.303
- Axioms of countablility and continuous mappings, Bull. Pol. Acad., Math. 8 (1960), 127–133. (1960) MR0116314
- -hereditarily closure-preserving -networks and -metrizability, Proc. Amer. Math. Soc. 112 (1991), 283–290. (1991) Zbl0770.54031MR1049850
Citations in EuDML Documents
top- Zhaowen Li, Spaces with -locally countable weak-bases
- Zhaowen Li, On weak-open -images of metric spaces
- Sheng Xiang Xia, Weak-open compact images of metric spaces
- Tran Van An, Luong Quoc Tuyen, Further properties of 1-sequence-covering maps
- Ying Ge, Shou Lin, -metrizable spaces and the images of semi-metric spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.