On the weak-open images of metric spaces

Zhaowen Li; Shou Lin

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 393-400
  • ISSN: 0011-4642

Abstract

top
In this paper, we give characterizations of certain weak-open images of metric spaces.

How to cite

top

Li, Zhaowen, and Lin, Shou. "On the weak-open images of metric spaces." Czechoslovak Mathematical Journal 54.2 (2004): 393-400. <http://eudml.org/doc/30868>.

@article{Li2004,
abstract = {In this paper, we give characterizations of certain weak-open images of metric spaces.},
author = {Li, Zhaowen, Lin, Shou},
journal = {Czechoslovak Mathematical Journal},
keywords = {$g$-metrizable spaces; weak-bases; weak-open mappings; $\sigma $-mappings; $\pi $-mappings; $cs$-mappings; -metrizable spaces; weak-bases; -mappings; -mappings; -mappings},
language = {eng},
number = {2},
pages = {393-400},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the weak-open images of metric spaces},
url = {http://eudml.org/doc/30868},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Li, Zhaowen
AU - Lin, Shou
TI - On the weak-open images of metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 393
EP - 400
AB - In this paper, we give characterizations of certain weak-open images of metric spaces.
LA - eng
KW - $g$-metrizable spaces; weak-bases; weak-open mappings; $\sigma $-mappings; $\pi $-mappings; $cs$-mappings; -metrizable spaces; weak-bases; -mappings; -mappings; -mappings
UR - http://eudml.org/doc/30868
ER -

References

top
  1. On some results concerning topological spaces and their continuous mappings, Proc. Sym. Gen. Top. Prague, 1961, pp. 41–54. (1961) MR0145472
  2. 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1966), 115–162. (1966) MR0227950DOI10.1070/RM1966v021n04ABEH004169
  3. 10.2140/pjm.1974.52.233, Pacific J.  Math. 52 (1974), 233–245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
  4. Characterizations of certain g -first countable spaces, Adv. Math. 29 (2000), 61–64. (2000) Zbl0999.54010MR1769127
  5. Certain s -images of locally separable metric spaces, Q A in Gen. Top. 14 (1996), 217–231. (1996) MR1403347
  6. Symmetric spaces, g -developable space and g -metrizable space, Math. Japon. 36 (1991), 71–84. (1991) MR1093356
  7. Spaces with compact-countable k -networks, Math. Japon. 49 (1999), 199–205. (1999) MR1687583
  8. On g -metrizability, Pacific J.  Math. 98 (1982), 327–332. (1982) Zbl0478.54025MR0650013
  9. 10.1016/S0166-8641(97)00031-X, Topology Appl. 81 (1997), 185–196. (1997) Zbl0885.54019MR1485766DOI10.1016/S0166-8641(97)00031-X
  10. On g -metrizable spaces, Chinese Ann. Math. 13 (1992), 403–409. (1992) Zbl0770.54030MR1190593
  11. g -metrizability and S ω , Topology Appl. 60 (1994), 185–189. (1994) MR1302472
  12. Star-countable k -networks, compact-countable k -networks, and related results, Houston J.  Math. 24 (1998), 655–670. (1998) MR1686632
  13. Generalized Metric Spaces and Mappings, Chinese scientific publ., Beijing, 1995. (1995) 
  14. On sequence-covering s -mappings, Adv. Math. 25 (1996), 548–551. (1996) Zbl0864.54026MR1453163
  15. 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79–86. (1994) MR1293119DOI10.1016/0166-8641(94)90101-5
  16. On s s -mappings, Northeast. Math.J. 9 (1993), 521–524. (1993) MR1274005
  17. On spaces with a star-countable k -network, Houston J.  Math. 23 (1997), 45–56. (1997) Zbl0887.54023MR1688687
  18. 10.2140/pjm.1984.113.303, Pacific J.  Math. 113 (1984), 303–332. (1984) MR0749538DOI10.2140/pjm.1984.113.303
  19. Axioms of countablility and continuous mappings, Bull. Pol. Acad., Math. 8 (1960), 127–133. (1960) MR0116314
  20. σ -hereditarily closure-preserving k -networks and g -metrizability, Proc. Amer. Math. Soc. 112 (1991), 283–290. (1991) Zbl0770.54031MR1049850

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.