On -resolvable and almost--resolvable spaces
J. Angoa; M. Ibarra; Angel Tamariz-Mascarúa
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 3, page 485-508
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAngoa, J., Ibarra, M., and Tamariz-Mascarúa, Angel. "On $\omega $-resolvable and almost-$\omega $-resolvable spaces." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 485-508. <http://eudml.org/doc/250302>.
@article{Angoa2008,
abstract = {We continue the study of almost-$\omega $-resolvable spaces beginning in A. Tamariz-Mascar’ua, H. Villegas-Rodr’ıguez, Spaces of continuous functions, box products and almost-$\omega $-resoluble spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 687–705. We prove in ZFC: (1) every crowded $T_0$ space with countable tightness and every $T_1$ space with $\pi $-weight $\le \aleph _1$ is hereditarily almost-$\omega $-resolvable, (2) every crowded paracompact $T_2$ space which is the closed preimage of a crowded Fréchet $T_2$ space in such a way that the crowded part of each fiber is $\omega $-resolvable, has this property too, and (3) every Baire dense-hereditarily almost-$\omega $-resolvable space is $\omega $-resolvable. Moreover, by using the concept of almost-$\omega $-resolvability, we obtain two results due the first one to O. Pavlov and the other to V.I. Malykhin: (1) $V = L$ implies that every crowded Baire space is $\omega $-resolvable, and (2) $V = L$ implies that the product of two crowded spaces is resolvable. Finally, we prove that the product of two almost resolvable spaces is resolvable.},
author = {Angoa, J., Ibarra, M., Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Baire spaces; resolvable spaces; almost resolvable spaces; almost-$\omega $-resolvable spaces; tightness; $\pi $-weight; Baire spaces; resolvable spaces; almost resolvable spaces; tightness; -weight},
language = {eng},
number = {3},
pages = {485-508},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\omega $-resolvable and almost-$\omega $-resolvable spaces},
url = {http://eudml.org/doc/250302},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Angoa, J.
AU - Ibarra, M.
AU - Tamariz-Mascarúa, Angel
TI - On $\omega $-resolvable and almost-$\omega $-resolvable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 485
EP - 508
AB - We continue the study of almost-$\omega $-resolvable spaces beginning in A. Tamariz-Mascar’ua, H. Villegas-Rodr’ıguez, Spaces of continuous functions, box products and almost-$\omega $-resoluble spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 687–705. We prove in ZFC: (1) every crowded $T_0$ space with countable tightness and every $T_1$ space with $\pi $-weight $\le \aleph _1$ is hereditarily almost-$\omega $-resolvable, (2) every crowded paracompact $T_2$ space which is the closed preimage of a crowded Fréchet $T_2$ space in such a way that the crowded part of each fiber is $\omega $-resolvable, has this property too, and (3) every Baire dense-hereditarily almost-$\omega $-resolvable space is $\omega $-resolvable. Moreover, by using the concept of almost-$\omega $-resolvability, we obtain two results due the first one to O. Pavlov and the other to V.I. Malykhin: (1) $V = L$ implies that every crowded Baire space is $\omega $-resolvable, and (2) $V = L$ implies that the product of two crowded spaces is resolvable. Finally, we prove that the product of two almost resolvable spaces is resolvable.
LA - eng
KW - Baire spaces; resolvable spaces; almost resolvable spaces; almost-$\omega $-resolvable spaces; tightness; $\pi $-weight; Baire spaces; resolvable spaces; almost resolvable spaces; tightness; -weight
UR - http://eudml.org/doc/250302
ER -
References
top- Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G., Irresolvable and submaximal spaces: Homogeneity versus -discreteness and new ZFC examples, Topology Appl. 107 (2000), 259-273. (2000) Zbl0984.54002MR1779814
- Arkhangel'skii A.V., Topological Function Spaces, Kluwer Academic Publishers, Dordrecht (1992). (1992) MR1144519
- Bella A., Malykhin V.I., Tightness and resolvability, Comment. Math. Univ. Carolin. 39 (1998), 177-184. (1998) Zbl0936.54004MR1623014
- Bolstein R., 10.1090/S0002-9939-1973-0312457-9, Proc. Amer. Math. Soc. 38 (1973), 193-197. (1973) Zbl0232.54014MR0312457DOI10.1090/S0002-9939-1973-0312457-9
- Comfort W.W., García-Ferreira S., 10.1016/S0166-8641(96)00052-1, Topology Appl. 74 (1996), 149-167. (1996) MR1425934DOI10.1016/S0166-8641(96)00052-1
- Comfort W.W., Feng L., The union of resolvable spaces is resolvable, Math. Japon. 38 (1993), 413-114. (1993) Zbl0769.54002MR1221007
- van Douwen E.K., 10.1016/0166-8641(93)90145-4, Topology Appl. 51 (1993), 125-139. (1993) Zbl0845.54028MR1229708DOI10.1016/0166-8641(93)90145-4
- El'kin A.G., Decomposition of spaces, Soviet Math. Dokl. 10 (1969), 521-525. (1969) Zbl0202.53701
- El'kin A.G., On the maximal resolvability of products of topological spaces, Soviet Math. Dokl. 10 (1969), 659-662. (1969) Zbl0199.57302MR0248726
- El'kin A.G., Resolvable spaces which are not maximally resolvable, Moscow Univ. Math. Bull. 24 (1969), 116-118. (1969) Zbl0183.51204MR0256331
- Foran J., Liebnits P., A characterization of almost resolvable spaces, Rend. Circ. Mat. di Palermo, Serie II XL (1991), 136-141. (1991) MR1119751
- Feng L., Masaveu O., Exactly -resolvable spaces and -resolvability, Math. Japon. 50 (1999), 333-339. (1999) Zbl0998.54026MR1727655
- Gruenhage G., Generalized metric spaces, Handbook of Set Theoretic-Topology, K. Kunen and J. Vaughan, Eds., North Holland, Amsterdam, New York, Oxford, Tokio, 1984. Zbl0794.54034MR0776629
- Hewitt E., 10.1215/S0012-7094-43-01029-4, Duke Math. J. 10 (1943), 306-333. (1943) Zbl0060.39407MR0008692DOI10.1215/S0012-7094-43-01029-4
- Hodel R., Cardinal functions I, 1-61 Handbook of Set-Theoretic Topology North-Holland (1984), Amsterdam-New-York-Oxford. (1984) Zbl0559.54003MR0776620
- Illanes A., 10.1090/S0002-9939-96-03348-5, Proc. Amer. Math. Soc. 124 (1996), 1243-1246. (1996) Zbl0856.54010MR1327020DOI10.1090/S0002-9939-96-03348-5
- Katětov M., On topological spaces containing no disjoint dense sets, Mat. Sbornik 21 (1947), 3-12. (1947) MR0021679
- Kunen K., Szymansky A., Tall F., Baire irresolvable spaces and ideal theory, Annal Math. Silesiana 2 (14) (1986), 98-107. (1986) MR0861505
- Malykhin V.I., On the resolvability of the product of two spaces and a problem of Katětov, Dokl. Akad. Nauk SSSR 222 (1975), 765-729. (1975) Zbl0325.54017
- Malykhin V.I., 10.1070/SM1973v019n01ABEH001738, Mat. Sbornik 90 (132) (1973), 105-115. (1973) DOI10.1070/SM1973v019n01ABEH001738
- Pavlov O., 10.1016/S0166-8641(02)00004-4, Topology Appl. 126 (2002), 37-47. (2002) Zbl1012.54004MR1934251DOI10.1016/S0166-8641(02)00004-4
- Pavlov O., Problems on resolvability, in Open Problems in Topology, II (Elsevier Publishers, 2007). (Elsevier Publishers, 2007)
- Pytkeev E.G., On maximally resolvable spaces, Proc. Steklov Inst. Math. 154 (1984), 225-230. (1984) Zbl0557.54002
- Tamariz-Mascarúa A., Villegas-Rodríguez H., Spaces of continuous functions, box products and almost--resoluble spaces, Comment. Math. Univ. Carolin. 43 4 (2002), 687-705. (2002) MR2045790
- Villegas L.M., On resolvable spaces and groups, Comment. Math. Univ. Carolin. 36 (1995), 579-584. (1995) Zbl0837.22001MR1364498
- Villegas L.M., Maximal resolvability of some topological spaces, Bol. Soc. Mat. Mexicana 5 (1999), 123-136. (1999) Zbl0963.22001MR1692526
- Willard S., General Topology, Addison-Wesley Publishing Co. (1970), Reading, Mass.-London-Don Mills. (1970) Zbl0205.26601MR0264581
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.