Martin’s Axiom and ω -resolvability of Baire spaces

Fidel Casarrubias-Segura; Fernando Hernández-Hernández; Angel Tamariz-Mascarúa

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 3, page 519-540
  • ISSN: 0010-2628

Abstract

top
We prove that, assuming MA, every crowded T 0 space X is ω -resolvable if it satisfies one of the following properties: (1) it contains a π -network of cardinality < 𝔠 constituted by infinite sets, (2) χ ( X ) < 𝔠 , (3) X is a T 2 Baire space and c ( X ) 0 and (4) X is a T 1 Baire space and has a network 𝒩 with cardinality < 𝔠 and such that the collection of the finite elements in it constitutes a σ -locally finite family. Furthermore, we prove that the existence of a T 1 Baire irresolvable space is equivalent to the existence of a T 1 Baire ω -irresolvable space, and each of these statements is equivalent to the existence of a T 1 almost- ω -irresolvable space. Finally, we prove that the minimum cardinality of a π -network with infinite elements of a space Seq ( u t ) is strictly greater than 0 .

How to cite

top

Casarrubias-Segura, Fidel, Hernández-Hernández, Fernando, and Tamariz-Mascarúa, Angel. "Martin’s Axiom and $\omega $-resolvability of Baire spaces." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 519-540. <http://eudml.org/doc/38148>.

@article{Casarrubias2010,
abstract = {We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega $-resolvable if it satisfies one of the following properties: (1) it contains a $\pi $-network of cardinality $< \mathfrak \{c\}$ constituted by infinite sets, (2) $\chi (X) < \mathfrak \{c\}$, (3) $X$ is a $T_2$ Baire space and $c(X) \le \aleph _0$ and (4) $X$ is a $T_1$ Baire space and has a network $\mathcal \{N\}$ with cardinality $< \mathfrak \{c\}$ and such that the collection of the finite elements in it constitutes a $\sigma $-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega $-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega $-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi $-network with infinite elements of a space $\operatorname\{Seq\}(u_t)$ is strictly greater than $\aleph _0$.},
author = {Casarrubias-Segura, Fidel, Hernández-Hernández, Fernando, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Martin’s Axiom; Baire spaces; resolvable spaces; $\omega $-resolvable spaces; almost resolvable spaces; almost-$\omega $-resolvable spaces; infinite $\pi $-network; Martin's axiom; Baire space; resolvable space; -resolvable space; almost resolvable space; almost--resolvable space; infinite -network},
language = {eng},
number = {3},
pages = {519-540},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Martin’s Axiom and $\omega $-resolvability of Baire spaces},
url = {http://eudml.org/doc/38148},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Casarrubias-Segura, Fidel
AU - Hernández-Hernández, Fernando
AU - Tamariz-Mascarúa, Angel
TI - Martin’s Axiom and $\omega $-resolvability of Baire spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 519
EP - 540
AB - We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega $-resolvable if it satisfies one of the following properties: (1) it contains a $\pi $-network of cardinality $< \mathfrak {c}$ constituted by infinite sets, (2) $\chi (X) < \mathfrak {c}$, (3) $X$ is a $T_2$ Baire space and $c(X) \le \aleph _0$ and (4) $X$ is a $T_1$ Baire space and has a network $\mathcal {N}$ with cardinality $< \mathfrak {c}$ and such that the collection of the finite elements in it constitutes a $\sigma $-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega $-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega $-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi $-network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than $\aleph _0$.
LA - eng
KW - Martin’s Axiom; Baire spaces; resolvable spaces; $\omega $-resolvable spaces; almost resolvable spaces; almost-$\omega $-resolvable spaces; infinite $\pi $-network; Martin's axiom; Baire space; resolvable space; -resolvable space; almost resolvable space; almost--resolvable space; infinite -network
UR - http://eudml.org/doc/38148
ER -

References

top
  1. Alas O., Sanchis M., Tkačhenko M.G., Tkachuk V.V., Wilson R.G., Irresolvable and submaximal spaces: Homogeneity versus σ discreteness and new ZFC examples, Topology Appl. 107 (2000), 259–273. (2000) MR1779814
  2. Angoa J., Ibarra M., Tamariz-Mascarúa Á., On ω -resolvable and almost- ω -resolvable spaces, Comment. Math. Univ. Carolin. 49 (2008), 485–508. (2008) Zbl1212.54069MR2490442
  3. Bell M., Kunen K., On the π -character of ultrafilters, C.T. Math. Rep. Acad. Sci. Canada 3 (1981), 351–356. (1981) Zbl0475.54001MR0642449
  4. Biernias J., Terepeta M., A sufficient condition for maximal resolvability of topological spaces, Comment. Math. Univ. Carolin. 41 (2004), 139–144. (2004) MR2076865
  5. Bolstein R., 10.1090/S0002-9939-1973-0312457-9, Proc. Amer. Math. Soc. 38 (1973), 193–197. (1973) Zbl0232.54014MR0312457DOI10.1090/S0002-9939-1973-0312457-9
  6. Comfort W.W., Feng L., The union of resolvable spaces is resolvable, Math. Japonica 38 (1993), 413–114. (1993) Zbl0769.54002MR1221007
  7. Comfort W.W., García-Ferreira S., 10.1016/S0166-8641(96)00052-1, Topology Appl. 74 (1996), 149–167. (1996) MR1425934DOI10.1016/S0166-8641(96)00052-1
  8. van Douwen E.K., 10.1016/0166-8641(93)90145-4, Topology Appl. 51 (1993), 125–139. (1993) Zbl0845.54028MR1229708DOI10.1016/0166-8641(93)90145-4
  9. El'kin A.G., On the maximal resolvability of products of topological spaces, Soviet Math. Dokl. 10 (1969), 659–662. (1969) Zbl0199.57302MR0248726
  10. El'kin A.G., Resolvable spaces which are not maximally resolvable, Moscow Univ. Math. Bull. 24 (1969), 116–118. (1969) Zbl0183.51204MR0256331
  11. Feng L., 10.1016/S0166-8641(99)00034-6, Topology Appl. 105 (2000), 31–36. (2000) MR1761084DOI10.1016/S0166-8641(99)00034-6
  12. Foran J., Liebnits P., 10.1007/BF02846366, Rend. Circ. Mat. Palermo (2) 40 (1991), 136–141. (1991) MR1119751DOI10.1007/BF02846366
  13. Feng L., Masaveu O., Exactly n -resolvable spaces and ω -resolvability, Math. Japonica 50 (1999), 333–339. (1999) Zbl0998.54026MR1727655
  14. Hewitt E., 10.1215/S0012-7094-43-01029-4, Duke Math. J. 10 (1943), 306–333. (1943) Zbl0060.39407MR0008692DOI10.1215/S0012-7094-43-01029-4
  15. Illanes A., 10.1090/S0002-9939-96-03348-5, Proc. Amer. Math. Soc. 124 (1996), 1243–1246. (1996) Zbl0856.54010MR1327020DOI10.1090/S0002-9939-96-03348-5
  16. Katětov M., On topological spaces containing no disjoint dense sets, Mat. Sb. 21 (1947), 3–12. (1947) MR0021679
  17. Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102, North Holland, sixth impression (1995), Amsterdam, London, New York, Tokyo. (1995) MR0597342
  18. Kunen K., Tall F., On the consistency of the non-existence of Baire irresolvable spaces, Topology Atlas, http://at.yorku.ca/v/a/a/a/27.htm (1998). (1998) 
  19. Kunen K., Szymansky A., Tall F., Baire irresolvable spaces and ideal theory, Ann. Math. Silesiana 2 (14) (1986), 98-107. (1986) MR0861505
  20. Lindgren W.F., Szymanski A.A., 10.1090/S0002-9939-97-04013-6, Proc. Amer. Math. Soc. 125 (1997), 3741–3746. (1997) Zbl0891.54010MR1415350DOI10.1090/S0002-9939-97-04013-6
  21. Malykhin V.I., On extremally disconnected topological groups, Soviet Math. Dokl. 16 (1975), 21–25. (1975) 
  22. Malykhin V.I., On the resolvability of the product of two spaces and a problem of Katětov, Dokl. Akad. Nauk SSSR 222 (1975), 765–729. (1975) Zbl0325.54017
  23. Malykhin V.I., Irresolvable countable spaces of weight less than 𝔠 , Comment. Math. Univ. Carolin. 40 1 (1999), 181–185. (1999) MR1715211
  24. Pavlov O., 10.1016/S0166-8641(02)00004-4, Topology Appl. 126 (2002), 37-47. (2002) Zbl1012.54004MR1934251DOI10.1016/S0166-8641(02)00004-4
  25. Pytke'ev E.G., On maximally resolvable spaces, Proc. Steklov. Inst. Math. 154 (1984), 225–230. (1984) 
  26. Tamariz-Mascarúa Á., Villegas-Rodríguez H., Spaces of continuous functions, box products and almost- ω -resolvable spaces, Comment. Math. Univ. Carolin. 43 4 (2002), 687–705. (2002) Zbl1090.54011MR2045790
  27. Vaughan J.E., Two spaces homeomorphic to S e q ( p ) , manuscript (). Zbl1053.54033
  28. Villegas L.M., On resolvable spaces and groups, Comment. Math. Univ. Carolin. 36 (1995), 579–584. (1995) Zbl0837.22001MR1364498
  29. Villegas L.M., Maximal resolvability of some topological spaces, Bol. Soc. Mat. Mexicana 5 (1999), 123–136. (1999) Zbl0963.22001MR1692526

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.