Martin’s Axiom and -resolvability of Baire spaces
Fidel Casarrubias-Segura; Fernando Hernández-Hernández; Angel Tamariz-Mascarúa
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 3, page 519-540
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCasarrubias-Segura, Fidel, Hernández-Hernández, Fernando, and Tamariz-Mascarúa, Angel. "Martin’s Axiom and $\omega $-resolvability of Baire spaces." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 519-540. <http://eudml.org/doc/38148>.
@article{Casarrubias2010,
abstract = {We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega $-resolvable if it satisfies one of the following properties: (1) it contains a $\pi $-network of cardinality $< \mathfrak \{c\}$ constituted by infinite sets, (2) $\chi (X) < \mathfrak \{c\}$, (3) $X$ is a $T_2$ Baire space and $c(X) \le \aleph _0$ and (4) $X$ is a $T_1$ Baire space and has a network $\mathcal \{N\}$ with cardinality $< \mathfrak \{c\}$ and such that the collection of the finite elements in it constitutes a $\sigma $-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega $-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega $-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi $-network with infinite elements of a space $\operatorname\{Seq\}(u_t)$ is strictly greater than $\aleph _0$.},
author = {Casarrubias-Segura, Fidel, Hernández-Hernández, Fernando, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Martin’s Axiom; Baire spaces; resolvable spaces; $\omega $-resolvable spaces; almost resolvable spaces; almost-$\omega $-resolvable spaces; infinite $\pi $-network; Martin's axiom; Baire space; resolvable space; -resolvable space; almost resolvable space; almost--resolvable space; infinite -network},
language = {eng},
number = {3},
pages = {519-540},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Martin’s Axiom and $\omega $-resolvability of Baire spaces},
url = {http://eudml.org/doc/38148},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Casarrubias-Segura, Fidel
AU - Hernández-Hernández, Fernando
AU - Tamariz-Mascarúa, Angel
TI - Martin’s Axiom and $\omega $-resolvability of Baire spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 519
EP - 540
AB - We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega $-resolvable if it satisfies one of the following properties: (1) it contains a $\pi $-network of cardinality $< \mathfrak {c}$ constituted by infinite sets, (2) $\chi (X) < \mathfrak {c}$, (3) $X$ is a $T_2$ Baire space and $c(X) \le \aleph _0$ and (4) $X$ is a $T_1$ Baire space and has a network $\mathcal {N}$ with cardinality $< \mathfrak {c}$ and such that the collection of the finite elements in it constitutes a $\sigma $-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega $-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega $-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi $-network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than $\aleph _0$.
LA - eng
KW - Martin’s Axiom; Baire spaces; resolvable spaces; $\omega $-resolvable spaces; almost resolvable spaces; almost-$\omega $-resolvable spaces; infinite $\pi $-network; Martin's axiom; Baire space; resolvable space; -resolvable space; almost resolvable space; almost--resolvable space; infinite -network
UR - http://eudml.org/doc/38148
ER -
References
top- Alas O., Sanchis M., Tkačhenko M.G., Tkachuk V.V., Wilson R.G., Irresolvable and submaximal spaces: Homogeneity versus discreteness and new ZFC examples, Topology Appl. 107 (2000), 259–273. (2000) MR1779814
- Angoa J., Ibarra M., Tamariz-Mascarúa Á., On -resolvable and almost--resolvable spaces, Comment. Math. Univ. Carolin. 49 (2008), 485–508. (2008) Zbl1212.54069MR2490442
- Bell M., Kunen K., On the -character of ultrafilters, C.T. Math. Rep. Acad. Sci. Canada 3 (1981), 351–356. (1981) Zbl0475.54001MR0642449
- Biernias J., Terepeta M., A sufficient condition for maximal resolvability of topological spaces, Comment. Math. Univ. Carolin. 41 (2004), 139–144. (2004) MR2076865
- Bolstein R., 10.1090/S0002-9939-1973-0312457-9, Proc. Amer. Math. Soc. 38 (1973), 193–197. (1973) Zbl0232.54014MR0312457DOI10.1090/S0002-9939-1973-0312457-9
- Comfort W.W., Feng L., The union of resolvable spaces is resolvable, Math. Japonica 38 (1993), 413–114. (1993) Zbl0769.54002MR1221007
- Comfort W.W., García-Ferreira S., 10.1016/S0166-8641(96)00052-1, Topology Appl. 74 (1996), 149–167. (1996) MR1425934DOI10.1016/S0166-8641(96)00052-1
- van Douwen E.K., 10.1016/0166-8641(93)90145-4, Topology Appl. 51 (1993), 125–139. (1993) Zbl0845.54028MR1229708DOI10.1016/0166-8641(93)90145-4
- El'kin A.G., On the maximal resolvability of products of topological spaces, Soviet Math. Dokl. 10 (1969), 659–662. (1969) Zbl0199.57302MR0248726
- El'kin A.G., Resolvable spaces which are not maximally resolvable, Moscow Univ. Math. Bull. 24 (1969), 116–118. (1969) Zbl0183.51204MR0256331
- Feng L., 10.1016/S0166-8641(99)00034-6, Topology Appl. 105 (2000), 31–36. (2000) MR1761084DOI10.1016/S0166-8641(99)00034-6
- Foran J., Liebnits P., 10.1007/BF02846366, Rend. Circ. Mat. Palermo (2) 40 (1991), 136–141. (1991) MR1119751DOI10.1007/BF02846366
- Feng L., Masaveu O., Exactly -resolvable spaces and -resolvability, Math. Japonica 50 (1999), 333–339. (1999) Zbl0998.54026MR1727655
- Hewitt E., 10.1215/S0012-7094-43-01029-4, Duke Math. J. 10 (1943), 306–333. (1943) Zbl0060.39407MR0008692DOI10.1215/S0012-7094-43-01029-4
- Illanes A., 10.1090/S0002-9939-96-03348-5, Proc. Amer. Math. Soc. 124 (1996), 1243–1246. (1996) Zbl0856.54010MR1327020DOI10.1090/S0002-9939-96-03348-5
- Katětov M., On topological spaces containing no disjoint dense sets, Mat. Sb. 21 (1947), 3–12. (1947) MR0021679
- Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102, North Holland, sixth impression (1995), Amsterdam, London, New York, Tokyo. (1995) MR0597342
- Kunen K., Tall F., On the consistency of the non-existence of Baire irresolvable spaces, Topology Atlas, http://at.yorku.ca/v/a/a/a/27.htm (1998). (1998)
- Kunen K., Szymansky A., Tall F., Baire irresolvable spaces and ideal theory, Ann. Math. Silesiana 2 (14) (1986), 98-107. (1986) MR0861505
- Lindgren W.F., Szymanski A.A., 10.1090/S0002-9939-97-04013-6, Proc. Amer. Math. Soc. 125 (1997), 3741–3746. (1997) Zbl0891.54010MR1415350DOI10.1090/S0002-9939-97-04013-6
- Malykhin V.I., On extremally disconnected topological groups, Soviet Math. Dokl. 16 (1975), 21–25. (1975)
- Malykhin V.I., On the resolvability of the product of two spaces and a problem of Katětov, Dokl. Akad. Nauk SSSR 222 (1975), 765–729. (1975) Zbl0325.54017
- Malykhin V.I., Irresolvable countable spaces of weight less than , Comment. Math. Univ. Carolin. 40 1 (1999), 181–185. (1999) MR1715211
- Pavlov O., 10.1016/S0166-8641(02)00004-4, Topology Appl. 126 (2002), 37-47. (2002) Zbl1012.54004MR1934251DOI10.1016/S0166-8641(02)00004-4
- Pytke'ev E.G., On maximally resolvable spaces, Proc. Steklov. Inst. Math. 154 (1984), 225–230. (1984)
- Tamariz-Mascarúa Á., Villegas-Rodríguez H., Spaces of continuous functions, box products and almost--resolvable spaces, Comment. Math. Univ. Carolin. 43 4 (2002), 687–705. (2002) Zbl1090.54011MR2045790
- Vaughan J.E., Two spaces homeomorphic to , manuscript (). Zbl1053.54033
- Villegas L.M., On resolvable spaces and groups, Comment. Math. Univ. Carolin. 36 (1995), 579–584. (1995) Zbl0837.22001MR1364498
- Villegas L.M., Maximal resolvability of some topological spaces, Bol. Soc. Mat. Mexicana 5 (1999), 123–136. (1999) Zbl0963.22001MR1692526
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.