A Fortin operator for two-dimensional Taylor-Hood elements
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 3, page 411-424
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math.33 (1979) 211–224.
- D. Boffi, Stability of higher-order triangular Hood-Taylor methods for the stationary Stokes equation. Math. Models Methods Appl. Sci.4 (1994) 223–235.
- D. Boffi, Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal.34 (1997) 664–670.
- F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal.28 (1991) 581–590.
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations: theory and algorithms, Springer Series in Computational Mathematics5. Springer-Verlag, Berlin (1986).
- L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér.19 (1985) 111–143.
- R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comp.54 (1990) 494–548.
- R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér.18 (1984) 175–182.