Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law
Guy Bayada; Jalila Sabil; Taoufik Sassi
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 2, page 243-262
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBayada, Guy, Sabil, Jalila, and Sassi, Taoufik. "Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law." ESAIM: Mathematical Modelling and Numerical Analysis 42.2 (2008): 243-262. <http://eudml.org/doc/250365>.
@article{Bayada2008,
abstract = {
In this paper, the convergence of a
Neumann-Dirichlet algorithm to approximate Coulomb's contact
problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.
},
author = {Bayada, Guy, Sabil, Jalila, Sassi, Taoufik},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Domain decomposition methods; contact problems; convergence.; domain decomposition; variational formulation},
language = {eng},
month = {3},
number = {2},
pages = {243-262},
publisher = {EDP Sciences},
title = {Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law},
url = {http://eudml.org/doc/250365},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Bayada, Guy
AU - Sabil, Jalila
AU - Sassi, Taoufik
TI - Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/3//
PB - EDP Sciences
VL - 42
IS - 2
SP - 243
EP - 262
AB -
In this paper, the convergence of a
Neumann-Dirichlet algorithm to approximate Coulomb's contact
problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.
LA - eng
KW - Domain decomposition methods; contact problems; convergence.; domain decomposition; variational formulation
UR - http://eudml.org/doc/250365
ER -
References
top- P. Alart, M. Barboteu, P. Le Tallec and M. Vidrascu, Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 399–404.
- L. Baillet and T. Sassi, Simulations numériques de différentes méthodes d'éléments finis pour les problèmes contact avec frottement. C. R. Acad. Sci. Paris Sér. II B331 (2003) 789–796.
- L. Baillet and T. Sassi, Mixed finite element method for the Signorini problem with friction. Numer. Methods Partial Differential Equations22 (2006) 1489–1508.
- G. Bayada, J. Sabil and T. Sassi, Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: résultat de convergence. C. R. Math. Acad. Sci. Paris335 (2002) 381–386.
- A.B. Chandhary and K.J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput. Struc.24 (1986) 855–873.
- P.W. Christensen, A. Klarbring, J.S. Pang and N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg.42 (1998) 145–173.
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques21. Dunod, Paris (1972).
- C. Eck and B. Wohlmuth, Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Models Methods Appl. Sci.13 (2003) 1103–1118.
- C. Farhat and F.X. Roux, Implicit parallel processing in structural mechanics. Computational Mechanics Advances1 (1994) 1–124.
- R. Glowinski, J.-L. Lions and R. Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications8. North-Holland Publishing Co., Amsterdam (1981). Translated from the French.
- J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg.191 (2002) 2261–2281.
- N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).
- R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci.4 (2001) 9–20.
- R.H. Krause, Monotone multigrid methods for Signorini's problem with friction. Ph.D. thesis, University of Berlin, Germany (2001).
- R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math.8 (2000) 177–206.
- R.H. Krause and B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci.5 (2002) 139–148.
- P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv.1 (1994) 121–220.
- L. Lusternik and V. Sobolev, Précis d'analyse fonctionnelle. MIR, Moscow (1989).
- B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996).
- G. Zavarise and P. Wriggers, A superlinear convergent augmented Lagrangian procedure for contact problems. Engrg. Comput.16 (1999) 88–119.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.