Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law

Guy Bayada; Jalila Sabil; Taoufik Sassi

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

  • Volume: 42, Issue: 2, page 243-262
  • ISSN: 0764-583X

Abstract

top
In this paper, the convergence of a Neumann-Dirichlet algorithm to approximate Coulomb's contact problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.

How to cite

top

Bayada, Guy, Sabil, Jalila, and Sassi, Taoufik. "Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law." ESAIM: Mathematical Modelling and Numerical Analysis 42.2 (2008): 243-262. <http://eudml.org/doc/250365>.

@article{Bayada2008,
abstract = { In this paper, the convergence of a Neumann-Dirichlet algorithm to approximate Coulomb's contact problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone. },
author = {Bayada, Guy, Sabil, Jalila, Sassi, Taoufik},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Domain decomposition methods; contact problems; convergence.; domain decomposition; variational formulation},
language = {eng},
month = {3},
number = {2},
pages = {243-262},
publisher = {EDP Sciences},
title = {Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law},
url = {http://eudml.org/doc/250365},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Bayada, Guy
AU - Sabil, Jalila
AU - Sassi, Taoufik
TI - Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/3//
PB - EDP Sciences
VL - 42
IS - 2
SP - 243
EP - 262
AB - In this paper, the convergence of a Neumann-Dirichlet algorithm to approximate Coulomb's contact problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.
LA - eng
KW - Domain decomposition methods; contact problems; convergence.; domain decomposition; variational formulation
UR - http://eudml.org/doc/250365
ER -

References

top
  1. P. Alart, M. Barboteu, P. Le Tallec and M. Vidrascu, Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 399–404.  
  2. L. Baillet and T. Sassi, Simulations numériques de différentes méthodes d'éléments finis pour les problèmes contact avec frottement. C. R. Acad. Sci. Paris Sér. II B331 (2003) 789–796.  
  3. L. Baillet and T. Sassi, Mixed finite element method for the Signorini problem with friction. Numer. Methods Partial Differential Equations22 (2006) 1489–1508.  
  4. G. Bayada, J. Sabil and T. Sassi, Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: résultat de convergence. C. R. Math. Acad. Sci. Paris335 (2002) 381–386.  
  5. A.B. Chandhary and K.J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput. Struc.24 (1986) 855–873.  
  6. P.W. Christensen, A. Klarbring, J.S. Pang and N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg.42 (1998) 145–173.  
  7. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques21. Dunod, Paris (1972).  
  8. C. Eck and B. Wohlmuth, Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Models Methods Appl. Sci.13 (2003) 1103–1118.  
  9. C. Farhat and F.X. Roux, Implicit parallel processing in structural mechanics. Computational Mechanics Advances1 (1994) 1–124.  
  10. R. Glowinski, J.-L. Lions and R. Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications8. North-Holland Publishing Co., Amsterdam (1981). Translated from the French.  
  11. J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg.191 (2002) 2261–2281.  
  12. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).  
  13. R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci.4 (2001) 9–20.  
  14. R.H. Krause, Monotone multigrid methods for Signorini's problem with friction. Ph.D. thesis, University of Berlin, Germany (2001).  
  15. R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math.8 (2000) 177–206.  
  16. R.H. Krause and B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci.5 (2002) 139–148.  
  17. P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv.1 (1994) 121–220.  
  18. L. Lusternik and V. Sobolev, Précis d'analyse fonctionnelle. MIR, Moscow (1989).  
  19. B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996).  
  20. G. Zavarise and P. Wriggers, A superlinear convergent augmented Lagrangian procedure for contact problems. Engrg. Comput.16 (1999) 88–119.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.