# Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law

Guy Bayada; Jalila Sabil; Taoufik Sassi

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

- Volume: 42, Issue: 2, page 243-262
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topBayada, Guy, Sabil, Jalila, and Sassi, Taoufik. "Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law." ESAIM: Mathematical Modelling and Numerical Analysis 42.2 (2008): 243-262. <http://eudml.org/doc/250365>.

@article{Bayada2008,

abstract = {
In this paper, the convergence of a
Neumann-Dirichlet algorithm to approximate Coulomb's contact
problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.
},

author = {Bayada, Guy, Sabil, Jalila, Sassi, Taoufik},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Domain decomposition methods; contact problems; convergence.; domain decomposition; variational formulation},

language = {eng},

month = {3},

number = {2},

pages = {243-262},

publisher = {EDP Sciences},

title = {Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law},

url = {http://eudml.org/doc/250365},

volume = {42},

year = {2008},

}

TY - JOUR

AU - Bayada, Guy

AU - Sabil, Jalila

AU - Sassi, Taoufik

TI - Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2008/3//

PB - EDP Sciences

VL - 42

IS - 2

SP - 243

EP - 262

AB -
In this paper, the convergence of a
Neumann-Dirichlet algorithm to approximate Coulomb's contact
problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.

LA - eng

KW - Domain decomposition methods; contact problems; convergence.; domain decomposition; variational formulation

UR - http://eudml.org/doc/250365

ER -

## References

top- P. Alart, M. Barboteu, P. Le Tallec and M. Vidrascu, Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 399–404. Zbl0961.65108
- L. Baillet and T. Sassi, Simulations numériques de différentes méthodes d'éléments finis pour les problèmes contact avec frottement. C. R. Acad. Sci. Paris Sér. II B331 (2003) 789–796. Zbl1134.74401
- L. Baillet and T. Sassi, Mixed finite element method for the Signorini problem with friction. Numer. Methods Partial Differential Equations22 (2006) 1489–1508. Zbl1105.74041
- G. Bayada, J. Sabil and T. Sassi, Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: résultat de convergence. C. R. Math. Acad. Sci. Paris335 (2002) 381–386. Zbl1044.74031
- A.B. Chandhary and K.J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput. Struc.24 (1986) 855–873. Zbl0604.73116
- P.W. Christensen, A. Klarbring, J.S. Pang and N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg.42 (1998) 145–173. Zbl0917.73063
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques21. Dunod, Paris (1972). Zbl0298.73001
- C. Eck and B. Wohlmuth, Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Models Methods Appl. Sci.13 (2003) 1103–1118. Zbl1053.74044
- C. Farhat and F.X. Roux, Implicit parallel processing in structural mechanics. Computational Mechanics Advances1 (1994) 1–124. Zbl0805.73062
- R. Glowinski, J.-L. Lions and R. Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications8. North-Holland Publishing Co., Amsterdam (1981). Translated from the French. Zbl0463.65046
- J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg.191 (2002) 2261–2281. Zbl1131.74344
- N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). Zbl0685.73002
- R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci.4 (2001) 9–20. Zbl1051.74045
- R.H. Krause, Monotone multigrid methods for Signorini's problem with friction. Ph.D. thesis, University of Berlin, Germany (2001).
- R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math.8 (2000) 177–206. Zbl1050.74046
- R.H. Krause and B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci.5 (2002) 139–148. Zbl1099.74536
- P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv.1 (1994) 121–220. Zbl0802.73079
- L. Lusternik and V. Sobolev, Précis d'analyse fonctionnelle. MIR, Moscow (1989).
- B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996). Zbl0857.65126
- G. Zavarise and P. Wriggers, A superlinear convergent augmented Lagrangian procedure for contact problems. Engrg. Comput.16 (1999) 88–119. Zbl0947.74079

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.