Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation

Guillaume Legendre; Takéo Takahashi

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

  • Volume: 42, Issue: 4, page 609-644
  • ISSN: 0764-583X

Abstract

top
We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme.

How to cite

top

Legendre, Guillaume, and Takahashi, Takéo. "Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation." ESAIM: Mathematical Modelling and Numerical Analysis 42.4 (2008): 609-644. <http://eudml.org/doc/250409>.

@article{Legendre2008,
abstract = { We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme. },
author = {Legendre, Guillaume, Takahashi, Takéo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Fluid-structure interaction; incompressible Navier-Stokes equations; arbitrary Lagrangian Eulerian; Lagrange-Galerkin method.; method of characteristics; finite element approximation; error estimates},
language = {eng},
month = {6},
number = {4},
pages = {609-644},
publisher = {EDP Sciences},
title = {Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation},
url = {http://eudml.org/doc/250409},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Legendre, Guillaume
AU - Takahashi, Takéo
TI - Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/6//
PB - EDP Sciences
VL - 42
IS - 4
SP - 609
EP - 644
AB - We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme.
LA - eng
KW - Fluid-structure interaction; incompressible Navier-Stokes equations; arbitrary Lagrangian Eulerian; Lagrange-Galerkin method.; method of characteristics; finite element approximation; error estimates
UR - http://eudml.org/doc/250409
ER -

References

top
  1. Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal.37 (2000) 799–826.  
  2. V.I. Arnold, Ordinary Differential Equations. Springer-Verlag, Berlin, Germany (1992).  
  3. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics15. Springer-Verlag, New York, USA (1994).  
  4. P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications20. North-Holland Publishing Co., Amsterdam, Netherlands (1988).  
  5. P.G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Engrg.1 (1972) 217–249.  
  6. J. Donea, S. Giuliani and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Engrg.33 (1982) 689–723.  
  7. F. Duarte, R. Gormaz and S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Engrg.193 (2004) 4819–4836.  
  8. C. Farhat, M. Lesoinne and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Internat. J. Numer. Methods Fluids21 (1995) 807–835 
  9. M.A. Fernández, J.-F. Gerbeau and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Internat. J. Numer. Methods Engrg.69 (2007) 794–821.  
  10. L. Formaggia and F. Nobile, A stability analysis for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math.7 (1999) 105–132.  
  11. L. Gastaldi, A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math.9 (2001) 123–156.  
  12. V. Girault, H. López and B. Maury, One time-step finite element discretization of the equation of motion of two fluid flows. Numer. Methods Partial Differ. Equ.22 (2005) 680–707.  
  13. R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Engrg.184 (2000) 241–267.  
  14. C. Grandmont and Y. Maday, Fluid-structure interaction: a theoretical point of view, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London (2003) 1–22.  
  15. C. Grandmont, V. Guimet and Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction. Math. Models Methods Appl. Sci.11 (2001) 1349–1377.  
  16. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics24. Pitman (Advanced Publishing Program), Boston, USA (1985).  
  17. H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow22 (1996) 335–352.  
  18. T.J.R. Hughes, W.K. Liu and T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg.29 (1981) 329–349.  
  19. I. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math.24 (1977) 303–319.  
  20. J. Janela, A. Lefebvre and B. Maury, A penalty method for the simulation of fluid-rigid body interaction. ESAIM: Proc.14 (2005) 115–123.  
  21. M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal.23 (1986) 562–580.  
  22. B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes equations with a free surface. Int. J. Comput. Fluid Dyn.6 (1996) 175–188.  
  23. B. Maury, Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys.156 (1999) 325–351.  
  24. B. Maury and R. Glowinski, Fluid-particle flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 1079–1084.  
  25. J. Nitsche, Finite element approximations for solving the elastic problem, in Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975), Part 1, Lecture Notes in Econom. and Math. Systems134, Springer-Verlag, Berlin, Germany (1976) 154–167.  
  26. O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math.38 (1982) 309–332.  
  27. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci.17 (2007) 957–983.  
  28. R. Rannacher, On finite element approximation of general boundary value problems in nonlinear elasticity. Calcolo17 (1980) 175–193.  
  29. J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak, Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system. SIAM J. Numer. Anal.43 (2005) 1539–1571.  
  30. J. San Martín, L. Smaranda and T. Takahashi, Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time. Prépublication de l'Institut Élie Cartan de Nancy17 (2006) .  URIhttp://hal.archives-ouvertes.fr/hal-00275223/
  31. E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math.53 (1988) 459–483.  
  32. T. Takahashi, Analysis of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations8 (2003) 1499–1532.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.