Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré
ESAIM: Probability and Statistics (2008)
- Volume: 12, page 258-272
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topZitt, Pierre-André. "Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré." ESAIM: Probability and Statistics 12 (2008): 258-272. <http://eudml.org/doc/250418>.
@article{Zitt2008,
abstract = {
In a statistical mechanics model with unbounded spins, we prove uniqueness of the Gibbs measure
under various assumptions on finite volume functional inequalities. We follow Royer's approach (Royer, 1999) and obtain uniqueness by showing convergence properties of a Glauber-Langevin dynamics. The result was known when the measures on the box [-n,n]d (with free boundary conditions) satisfied the same logarithmic Sobolev inequality. We generalize this in two directions: either the constants may be allowed to grow sub-linearly in the diameter, or we may suppose a weaker inequality than log-Sobolev, but stronger than Poincaré. We conclude by giving a heuristic argument showing that this could be the right inequalities to look at.
},
author = {Zitt, Pierre-André},
journal = {ESAIM: Probability and Statistics},
keywords = {Ising model; unbounded spins; functional inequalities; Beckner inequalities},
language = {eng},
month = {1},
pages = {258-272},
publisher = {EDP Sciences},
title = {Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré},
url = {http://eudml.org/doc/250418},
volume = {12},
year = {2008},
}
TY - JOUR
AU - Zitt, Pierre-André
TI - Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré
JO - ESAIM: Probability and Statistics
DA - 2008/1//
PB - EDP Sciences
VL - 12
SP - 258
EP - 272
AB -
In a statistical mechanics model with unbounded spins, we prove uniqueness of the Gibbs measure
under various assumptions on finite volume functional inequalities. We follow Royer's approach (Royer, 1999) and obtain uniqueness by showing convergence properties of a Glauber-Langevin dynamics. The result was known when the measures on the box [-n,n]d (with free boundary conditions) satisfied the same logarithmic Sobolev inequality. We generalize this in two directions: either the constants may be allowed to grow sub-linearly in the diameter, or we may suppose a weaker inequality than log-Sobolev, but stronger than Poincaré. We conclude by giving a heuristic argument showing that this could be the right inequalities to look at.
LA - eng
KW - Ising model; unbounded spins; functional inequalities; Beckner inequalities
UR - http://eudml.org/doc/250418
ER -
References
top- F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and gaussian, Orlicz hypercontractivity and application to isoperimetry. Revistra Mat. Iberoamericana22 (2006) 993–1067.
- F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line. Studia Math.159 (2003) 481–497. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday (Polish).
- T. Bodineau and B. Helffer, Correlations, spectral gaps and log-Sobolev inequalities for unbounded spins systems, in Differential equations and mathematical physics, Birmingham, International Press (1999) 27–42.
- T. Bodineau and F. Martinelli, Some new results on the kinetic ising model in a pure phase. J. Statist. Phys.109 (2002) 207–235.
- P. Cattiaux, I. Gentil and A. Guillin, Weak logarithmic Sobolev inequalities and entropic convergence. Prob. Theory Rel. Fields139 (2007) 563–603.
- P. Cattiaux and A. Guillin, On quadratic transportation cost inequalities. J. Math. Pures Appl.86 (2006) 342–361.
- R. Latała and K. Oleszkiewicz, Between Sobolev and Poincaré, in Geometric aspects of functional analysis, Lect. Notes Math. Springer, Berlin 1745 (2000) 147–168.
- M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in Séminaire de Probabilités, XXXV, Lect. Notes Math. Springer, Berlin 1755 (2001) 167–194.
- S.L. Lu and H.-T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys.156 (1993) 399–433.
- L. Miclo, An example of application of discrete Hardy's inequalities. Markov Process. Related Fields5 (1999) 319–330.
- G. Royer, Une initiation aux inégalités de Sobolev logarithmiques. Number 5 in Cours spécialisés. SMF (1999).
- D.W. Stroock and B. Zegarliński, The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys.149 (1992) 175–193.
- D.W. Stroock and B. Zegarliński, On the ergodic properties of Glauber dynamics. J. Stat. Phys.81(5/6) (1995).
- N. Yoshida, The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Annales de l'Institut H. Poincaré37 (2001) 223–243.
- B. Zegarliński. The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Comm. Math. Phys.175 (1996) 401–432.
- P.-A. Zitt, Applications d'inégalités fonctionnelles à la mécanique statistique et au recuit simulé. PhD thesis, University of Paris X, Nanterre (2006). . URIhttp://tel.archives-ouvertes.fr/tel-00114033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.