The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 2, page 223-243
- ISSN: 0246-0203
Access Full Article
topHow to cite
topYoshida, Nobuo. "The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice." Annales de l'I.H.P. Probabilités et statistiques 37.2 (2001): 223-243. <http://eudml.org/doc/77688>.
@article{Yoshida2001,
author = {Yoshida, Nobuo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ferromagnetic systems; unbounded spins; log-Sobolev inequality; Poincaré inequality; exponential decay of spin-spin correlations; mixing condition},
language = {eng},
number = {2},
pages = {223-243},
publisher = {Elsevier},
title = {The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice},
url = {http://eudml.org/doc/77688},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Yoshida, Nobuo
TI - The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 2
SP - 223
EP - 243
LA - eng
KW - ferromagnetic systems; unbounded spins; log-Sobolev inequality; Poincaré inequality; exponential decay of spin-spin correlations; mixing condition
UR - http://eudml.org/doc/77688
ER -
References
top- [1] S Aida, T Masuda, I Shigekawa, Logarithmic Sobolev inequalities and exponential integrability, J. Funct. Anal.126 (1) (1994) 83-101. Zbl0846.46020MR1305064
- [2] S Albeverio, Yu.G Kondratiev, M Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1995) 102-138. Zbl0820.60042MR1317712
- [3] S Albeverio, Yu.G Kondratiev, M Röckner, T.V Tsikalenko, Uniqueness of Gibbs states for quantum lattice systems, Probab. Theory Related Fields108 (1997) 193-218. Zbl0883.60094MR1452556
- [4] D Bakry, M Emery, Diffusions hypercontractives, in: Séminaire de Probabilités XIX, Springer Lecture Notes in Math., 1123, 1985, pp. 177-206. Zbl0561.60080MR889476
- [5] J Bellissard, R Høegh-Krohn, Compactness and maximal Gibbs state for random Gibbs fields on the lattice, Comm. Math. Phys.84 (1982) 297-327. Zbl0495.60057MR667405
- [6] T Bodineau, B Helffer, Log-Sobolev inequality for unbounded spin systems, J. Funct. Anal.166 (1999) 168-178. Zbl0972.82035MR1704666
- [7] T Bodineau, B Helffer, Correlations, spectral gap and log-Sobolev inequality for unbounded spin systems, in: Differential Equations and Mathematical Physics, Birmingham, International Press, 1999, pp. 27-42. Zbl1161.82306MR1704666
- [8] H Doss, G Royer, Processus de diffusion associe aux mesures de Gibbs, Z. Wahrsch. verw. Gebiete46 (1978) 107-124. Zbl0384.60076MR512335
- [9] R.L Dobrushin, S Shlosman, Constructive criterion for the uniqueness of Gibbs field, in: Fritz J, Jaffe A, Szasz D (Eds.), Statistical Physics and Dynamical Systems, Birkhäuser, 1985. Zbl0569.46042MR821306
- [10] R.L Dobrushin, S Shlosman, Completely analytical Gibbs fields, in: Fritz J, Jaffe A, Szasz D (Eds.), Statistical Physics and Dynamical Systems, Birkhäuser, 1985. Zbl0569.46043MR821307
- [11] R.L Dobrushin, S Shlosman, Completely analytical interactions: Constructive description, J. Stat. Phys.46 (1987) 983-1014. Zbl0683.60080MR893129
- [12] J.D Deuschel, D.W Stroock, Large Deviations, Academic Press, 1989. Zbl0705.60029MR997938
- [13] I Gentil, C Roberto, Spectral gaps for spin systems: some non-convex phase examples, preprint, 2000. Zbl0992.60091MR1814423
- [14] B Helffer, Remarks on the decay of correlations and Witten Laplacians III — Application to logarithmic Sobolev inequalities, Ann. de l'Insti. H. Poincaré (Sect. Probab-Stat) (1998). Zbl1055.82004
- [15] R Holley, D.W Stroock, Logarithmic Sobolev inequality and stochastic Ising models, J. Stat. Phys.46 (1987) 1159-1194. Zbl0682.60109MR893137
- [16] M Ledoux, Log-Sobolev inequality for unbounded spin systems revisited, preprint, 1999. MR1704666
- [17] T.M Liggett, Interacting Particle Systems, Springer Verlag, Berlin, 1985. Zbl0559.60078MR776231
- [18] T Lindvall, Lectures on the Coupling Method, Wiley, 1992. Zbl0850.60019MR1180522
- [19] S.L Lu, H.T Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
- [20] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: Attractive case, Comm. Math. Phys.161 (1994) 447-486. Zbl0793.60110MR1269387
- [21] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II: General case, Comm. Math. Phys.161 (1994) 487-514. Zbl0793.60111MR1269388
- [22] D.W Stroock, S.R.S Varadhan, Multidimensional Diffusion Processes, Springer Verlag, Berlin, 1979. Zbl0426.60069MR532498
- [23] D.W Stroock, B Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition, Comm. Math. Phys.144 (1992) 303-323. Zbl0745.60104MR1152374
- [24] D.W Stroock, B Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on the lattice, Comm. Math. Phys.149 (1992) 175-193. Zbl0758.60070MR1182416
- [25] Sugiura M., Private communication.
- [26] N Yoshida, Sobolev spaces on a Riemannian manifold and their equivalence, J. Math. Kyoto Univ.33 (1992) 621-654. Zbl0771.58005MR1183370
- [27] N Yoshida, The log-Sobolev inequality for weakly coupled lattice fields, Probab. Theory Related Fields115 (1999) 1-40. Zbl0948.60095MR1715549
- [28] N Yoshida, Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice, J. Funct. Anal.173 (2000) 74-102. Zbl1040.82047MR1760279
- [29] B Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys.175 (1996) 401-432. Zbl0844.46050MR1370101
Citations in EuDML Documents
top- Lorenzo Bertini, Nicoletta Cancrini, Filippo Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas
- Liming Wu, Estimate of spectral gap for continuous gas
- Pierre-André Zitt, Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré
- Michel Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.