The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice

Nobuo Yoshida

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 2, page 223-243
  • ISSN: 0246-0203

How to cite

top

Yoshida, Nobuo. "The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice." Annales de l'I.H.P. Probabilités et statistiques 37.2 (2001): 223-243. <http://eudml.org/doc/77688>.

@article{Yoshida2001,
author = {Yoshida, Nobuo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ferromagnetic systems; unbounded spins; log-Sobolev inequality; Poincaré inequality; exponential decay of spin-spin correlations; mixing condition},
language = {eng},
number = {2},
pages = {223-243},
publisher = {Elsevier},
title = {The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice},
url = {http://eudml.org/doc/77688},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Yoshida, Nobuo
TI - The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 2
SP - 223
EP - 243
LA - eng
KW - ferromagnetic systems; unbounded spins; log-Sobolev inequality; Poincaré inequality; exponential decay of spin-spin correlations; mixing condition
UR - http://eudml.org/doc/77688
ER -

References

top
  1. [1] S Aida, T Masuda, I Shigekawa, Logarithmic Sobolev inequalities and exponential integrability, J. Funct. Anal.126 (1) (1994) 83-101. Zbl0846.46020MR1305064
  2. [2] S Albeverio, Yu.G Kondratiev, M Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1995) 102-138. Zbl0820.60042MR1317712
  3. [3] S Albeverio, Yu.G Kondratiev, M Röckner, T.V Tsikalenko, Uniqueness of Gibbs states for quantum lattice systems, Probab. Theory Related Fields108 (1997) 193-218. Zbl0883.60094MR1452556
  4. [4] D Bakry, M Emery, Diffusions hypercontractives, in: Séminaire de Probabilités XIX, Springer Lecture Notes in Math., 1123, 1985, pp. 177-206. Zbl0561.60080MR889476
  5. [5] J Bellissard, R Høegh-Krohn, Compactness and maximal Gibbs state for random Gibbs fields on the lattice, Comm. Math. Phys.84 (1982) 297-327. Zbl0495.60057MR667405
  6. [6] T Bodineau, B Helffer, Log-Sobolev inequality for unbounded spin systems, J. Funct. Anal.166 (1999) 168-178. Zbl0972.82035MR1704666
  7. [7] T Bodineau, B Helffer, Correlations, spectral gap and log-Sobolev inequality for unbounded spin systems, in: Differential Equations and Mathematical Physics, Birmingham, International Press, 1999, pp. 27-42. Zbl1161.82306MR1704666
  8. [8] H Doss, G Royer, Processus de diffusion associe aux mesures de Gibbs, Z. Wahrsch. verw. Gebiete46 (1978) 107-124. Zbl0384.60076MR512335
  9. [9] R.L Dobrushin, S Shlosman, Constructive criterion for the uniqueness of Gibbs field, in: Fritz J, Jaffe A, Szasz D (Eds.), Statistical Physics and Dynamical Systems, Birkhäuser, 1985. Zbl0569.46042MR821306
  10. [10] R.L Dobrushin, S Shlosman, Completely analytical Gibbs fields, in: Fritz J, Jaffe A, Szasz D (Eds.), Statistical Physics and Dynamical Systems, Birkhäuser, 1985. Zbl0569.46043MR821307
  11. [11] R.L Dobrushin, S Shlosman, Completely analytical interactions: Constructive description, J. Stat. Phys.46 (1987) 983-1014. Zbl0683.60080MR893129
  12. [12] J.D Deuschel, D.W Stroock, Large Deviations, Academic Press, 1989. Zbl0705.60029MR997938
  13. [13] I Gentil, C Roberto, Spectral gaps for spin systems: some non-convex phase examples, preprint, 2000. Zbl0992.60091MR1814423
  14. [14] B Helffer, Remarks on the decay of correlations and Witten Laplacians III — Application to logarithmic Sobolev inequalities, Ann. de l'Insti. H. Poincaré (Sect. Probab-Stat) (1998). Zbl1055.82004
  15. [15] R Holley, D.W Stroock, Logarithmic Sobolev inequality and stochastic Ising models, J. Stat. Phys.46 (1987) 1159-1194. Zbl0682.60109MR893137
  16. [16] M Ledoux, Log-Sobolev inequality for unbounded spin systems revisited, preprint, 1999. MR1704666
  17. [17] T.M Liggett, Interacting Particle Systems, Springer Verlag, Berlin, 1985. Zbl0559.60078MR776231
  18. [18] T Lindvall, Lectures on the Coupling Method, Wiley, 1992. Zbl0850.60019MR1180522
  19. [19] S.L Lu, H.T Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
  20. [20] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: Attractive case, Comm. Math. Phys.161 (1994) 447-486. Zbl0793.60110MR1269387
  21. [21] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II: General case, Comm. Math. Phys.161 (1994) 487-514. Zbl0793.60111MR1269388
  22. [22] D.W Stroock, S.R.S Varadhan, Multidimensional Diffusion Processes, Springer Verlag, Berlin, 1979. Zbl0426.60069MR532498
  23. [23] D.W Stroock, B Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition, Comm. Math. Phys.144 (1992) 303-323. Zbl0745.60104MR1152374
  24. [24] D.W Stroock, B Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on the lattice, Comm. Math. Phys.149 (1992) 175-193. Zbl0758.60070MR1182416
  25. [25] Sugiura M., Private communication. 
  26. [26] N Yoshida, Sobolev spaces on a Riemannian manifold and their equivalence, J. Math. Kyoto Univ.33 (1992) 621-654. Zbl0771.58005MR1183370
  27. [27] N Yoshida, The log-Sobolev inequality for weakly coupled lattice fields, Probab. Theory Related Fields115 (1999) 1-40. Zbl0948.60095MR1715549
  28. [28] N Yoshida, Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice, J. Funct. Anal.173 (2000) 74-102. Zbl1040.82047MR1760279
  29. [29] B Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys.175 (1996) 401-432. Zbl0844.46050MR1370101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.