Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings
Archivum Mathematicum (2008)
- Volume: 044, Issue: 3, page 173-183
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topWang, Deng Yin, and Wang, Xian. "Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings." Archivum Mathematicum 044.3 (2008): 173-183. <http://eudml.org/doc/250457>.
@article{Wang2008,
abstract = {Let $R$ be an arbitrary commutative ring with identity, $\operatorname\{gl\}(n,R)$ the general linear Lie algebra over $R$, $d(n,R)$ the diagonal subalgebra of $\operatorname\{gl\}(n,R)$. In case 2 is a unit of $R$, all subalgebras of $\operatorname\{gl\}(n,R)$ containing $d(n,R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.},
author = {Wang, Deng Yin, Wang, Xian},
journal = {Archivum Mathematicum},
keywords = {the general linear Lie algebra; derivations of Lie algebras; commutative rings; general linear Lie algebra; derivation of Lie algebras; commutative ring},
language = {eng},
number = {3},
pages = {173-183},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings},
url = {http://eudml.org/doc/250457},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Wang, Deng Yin
AU - Wang, Xian
TI - Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 173
EP - 183
AB - Let $R$ be an arbitrary commutative ring with identity, $\operatorname{gl}(n,R)$ the general linear Lie algebra over $R$, $d(n,R)$ the diagonal subalgebra of $\operatorname{gl}(n,R)$. In case 2 is a unit of $R$, all subalgebras of $\operatorname{gl}(n,R)$ containing $d(n,R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.
LA - eng
KW - the general linear Lie algebra; derivations of Lie algebras; commutative rings; general linear Lie algebra; derivation of Lie algebras; commutative ring
UR - http://eudml.org/doc/250457
ER -
References
top- Benkart, G. M., Osbom, J. M., 10.1090/S0002-9947-1981-0594417-5, Trans. Amer. Math. Soc. 263 (1981), 411–430. (1981) MR0594417DOI10.1090/S0002-9947-1981-0594417-5
- Cao, Y., Tang, Z., Automorphisms of the Lie algebras of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl. 360 (2003), 105–122. (2003) MR1948476
- Jøndrup, S., 10.1007/BF01194296, Arch. Math. 49 (1987), 497–502. (1987) MR0921115DOI10.1007/BF01194296
- Jøndrup, S., 10.1016/0021-8693(91)90206-N, J. Algebra 141 (1991), 106–114. (1991) MR1118318DOI10.1016/0021-8693(91)90206-N
- Jøndrup, S., Automorphisms and derivations of upper triangular matrix rings, Linear Algebra Appl. 221 (1995), 205–218. (1995) MR1331800
- Wang, D., Ou, S., Yu, Q., 10.1080/03081080500412463, Linear and Multilinear Algebra 54 (2006), 369 – 377. (2006) Zbl1161.17312MR2236037DOI10.1080/03081080500412463
- Wang, D., Yu, Q., Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring, Linear Algebra Appl. 418 (2006), 763–774. (2006) Zbl1161.17313MR2260227
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.