How sensitive is C p ( X , Y ) to changes in X and/or Y ?

Raushan Z. Buzyakova

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 4, page 657-665
  • ISSN: 0010-2628

Abstract

top
We investigate how the Lindelöf property of the function space C p ( X , Y ) is influenced by slight changes in X and/or Y .

How to cite

top

Buzyakova, Raushan Z.. "How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 657-665. <http://eudml.org/doc/250466>.

@article{Buzyakova2008,
abstract = {We investigate how the Lindelöf property of the function space $C_p(X,Y)$ is influenced by slight changes in $X$ and/or $Y$.},
author = {Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C_p(X, Y)$; Lindel" of space; spaces; Lindelöf property},
language = {eng},
number = {4},
pages = {657-665},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?},
url = {http://eudml.org/doc/250466},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Buzyakova, Raushan Z.
TI - How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 657
EP - 665
AB - We investigate how the Lindelöf property of the function space $C_p(X,Y)$ is influenced by slight changes in $X$ and/or $Y$.
LA - eng
KW - $C_p(X, Y)$; Lindel" of space; spaces; Lindelöf property
UR - http://eudml.org/doc/250466
ER -

References

top
  1. Arhangel'skii A.V., Topological Function Spaces, Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR1144519
  2. Asanov M.O., On cardinal invariants of function spaces, Modern Topology and Set Theory, Igevsk, (2) 1979, 8-12. 
  3. Baturov D., On subspaces of function spaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1987, no. 4, 66-69. Zbl0665.54004MR0913076
  4. Dow A., Simon P., Spaces of continuous functions over a Ψ -space, Topology Appl. 153 (2006), 13 2260-2271. (2006) Zbl1102.54017MR2238729
  5. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
  6. Franklin S.P., Rajagopalan M., 10.1090/S0002-9947-1971-0283742-7, Trans. Amer. Math. Soc. 155 (1971), 305-314. (1971) Zbl0217.48104MR0283742DOI10.1090/S0002-9947-1971-0283742-7
  7. Hrušák M., Szeptycki P.J., Tamariz-Mascarúa A., 10.1016/j.topol.2004.09.009, Topology Appl. 148 (2005), 1-3 239-252. (2005) Zbl1068.54022MR2118968DOI10.1016/j.topol.2004.09.009
  8. Mardešić S., On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278-291. (1960) MR0116306
  9. Pol R., Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci. 25 10 (1977), 993-997. (1977) Zbl0389.54009MR0461429
  10. Pol R., The Lindelöf property and its analogue in function spaces with weak topology, Topology 4-th Colloq., Budapest, 1978, Vol. 2; Amsterdam, 1980, pp.965-969. 
  11. Talagrand M., Sur une conjecture de H.H. Corson, Bull. Sci. Math. (2) 99 (1975), 4 211-212. (1975) MR0430752

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.