On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 4, page 629-635
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topOkunev, Oleg. "On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 629-635. <http://eudml.org/doc/35136>.
@article{Okunev2009,
abstract = {We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup \lbrace p\rbrace $, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega )\le l(C_p(X)^\omega )$ and $\operatorname\{ext\}(C_p(Y)^\omega )\le \operatorname\{ext\}(C_p(X)^\omega )$.},
author = {Okunev, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pointwise convergence; Lindelöf property; space; Lindelöf property},
language = {eng},
number = {4},
pages = {629-635},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces},
url = {http://eudml.org/doc/35136},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Okunev, Oleg
TI - On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 629
EP - 635
AB - We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup \lbrace p\rbrace $, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega )\le l(C_p(X)^\omega )$ and $\operatorname{ext}(C_p(Y)^\omega )\le \operatorname{ext}(C_p(X)^\omega )$.
LA - eng
KW - pointwise convergence; Lindelöf property; space; Lindelöf property
UR - http://eudml.org/doc/35136
ER -
References
top- Arhangel'skii A.V., On linear topological and topological classification of spaces , Zb. Rad. 3 (1989), 3--12. (1989) MR1017630
- Arhangel'skii A.V., Topological Function Spaces, Kluwer Acad. Publ. Dordrecht (1992). (1992) MR1485266
- Buzyakova R.Z., How sensitive is to changes in and/or ?, Comment. Math. Univ. Carolin. 49 4 (2008), 657--665. (2008) Zbl1212.54051MR2493945
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Helderman, Berlin, 1989. Zbl0684.54001MR1039321
- Kubiš W., Okunev O., Szeptycki P.J., 10.1016/j.topol.2005.09.009, Topology Appl. 153 (2006), 2574--2590. (2006) Zbl1102.54028MR2243735DOI10.1016/j.topol.2005.09.009
- Okunev O., 10.1016/0166-8641(93)90041-B, Topology Appl. 49 (1993), 149--166. (1993) Zbl0796.54026MR1206222DOI10.1016/0166-8641(93)90041-B
- Pol R., A theorem on the weak topology of for compact scattered , Fund. Math. 106 2 (1980), 135--140. (1980) Zbl0444.54010MR0580591
- Rogers A., Jayne E. (Eds.), Analytic Sets, Academic Press, London, 1980. Zbl0589.54047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.