On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces

Oleg Okunev

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 4, page 629-635
  • ISSN: 0010-2628

Abstract

top
We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if C p ( X ) is Lindelöf, Y = X { p } , and the point p has countable character in Y , then C p ( Y ) is Lindelöf; b) if Y is a cozero subspace of a Tychonoff space X , then l ( C p ( Y ) ω ) l ( C p ( X ) ω ) and ext ( C p ( Y ) ω ) ext ( C p ( X ) ω ) .

How to cite

top

Okunev, Oleg. "On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 629-635. <http://eudml.org/doc/35136>.

@article{Okunev2009,
abstract = {We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup \lbrace p\rbrace $, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega )\le l(C_p(X)^\omega )$ and $\operatorname\{ext\}(C_p(Y)^\omega )\le \operatorname\{ext\}(C_p(X)^\omega )$.},
author = {Okunev, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pointwise convergence; Lindelöf property; space; Lindelöf property},
language = {eng},
number = {4},
pages = {629-635},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces},
url = {http://eudml.org/doc/35136},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Okunev, Oleg
TI - On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 629
EP - 635
AB - We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup \lbrace p\rbrace $, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega )\le l(C_p(X)^\omega )$ and $\operatorname{ext}(C_p(Y)^\omega )\le \operatorname{ext}(C_p(X)^\omega )$.
LA - eng
KW - pointwise convergence; Lindelöf property; space; Lindelöf property
UR - http://eudml.org/doc/35136
ER -

References

top
  1. Arhangel'skii A.V., On linear topological and topological classification of spaces C p ( X ) , Zb. Rad. 3 (1989), 3--12. (1989) MR1017630
  2. Arhangel'skii A.V., Topological Function Spaces, Kluwer Acad. Publ. Dordrecht (1992). (1992) MR1485266
  3. Buzyakova R.Z., How sensitive is C p ( X , Y ) to changes in X and/or Y ?, Comment. Math. Univ. Carolin. 49 4 (2008), 657--665. (2008) Zbl1212.54051MR2493945
  4. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Helderman, Berlin, 1989. Zbl0684.54001MR1039321
  5. Kubiš W., Okunev O., Szeptycki P.J., 10.1016/j.topol.2005.09.009, Topology Appl. 153 (2006), 2574--2590. (2006) Zbl1102.54028MR2243735DOI10.1016/j.topol.2005.09.009
  6. Okunev O., 10.1016/0166-8641(93)90041-B, Topology Appl. 49 (1993), 149--166. (1993) Zbl0796.54026MR1206222DOI10.1016/0166-8641(93)90041-B
  7. Pol R., A theorem on the weak topology of C ( X ) for compact scattered X , Fund. Math. 106 2 (1980), 135--140. (1980) Zbl0444.54010MR0580591
  8. Rogers A., Jayne E. (Eds.), Analytic Sets, Academic Press, London, 1980. Zbl0589.54047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.