On monotone Lindelöfness of countable spaces

Ronnie Levy; Mikhail Matveev

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 1, page 155-161
  • ISSN: 0010-2628

Abstract

top
A space is monotonically Lindelöf (mL) if one can assign to every open cover 𝒰 a countable open refinement r ( 𝒰 ) so that r ( 𝒰 ) refines r ( 𝒱 ) whenever 𝒰 refines 𝒱 . We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.

How to cite

top

Levy, Ronnie, and Matveev, Mikhail. "On monotone Lindelöfness of countable spaces." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 155-161. <http://eudml.org/doc/250472>.

@article{Levy2008,
abstract = {A space is monotonically Lindelöf (mL) if one can assign to every open cover $\mathcal \{U\}$ a countable open refinement $r(\mathcal \{U\})$ so that $r(\mathcal \{U\})$ refines $r(\mathcal \{V\})$ whenever $\mathcal \{U\}$ refines $\mathcal \{V\}$. We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.},
author = {Levy, Ronnie, Matveev, Mikhail},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space; Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space},
language = {eng},
number = {1},
pages = {155-161},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On monotone Lindelöfness of countable spaces},
url = {http://eudml.org/doc/250472},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Levy, Ronnie
AU - Matveev, Mikhail
TI - On monotone Lindelöfness of countable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 155
EP - 161
AB - A space is monotonically Lindelöf (mL) if one can assign to every open cover $\mathcal {U}$ a countable open refinement $r(\mathcal {U})$ so that $r(\mathcal {U})$ refines $r(\mathcal {V})$ whenever $\mathcal {U}$ refines $\mathcal {V}$. We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.
LA - eng
KW - Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space; Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space
UR - http://eudml.org/doc/250472
ER -

References

top
  1. Baumgartner J.E., 10.2307/2273356, J. Symbolic Logic 45 (1980), 1 85-92. (1980) MR0560227DOI10.2307/2273356
  2. Bennett H., Lutzer D., Matveev M., 10.1016/j.topol.2004.05.015, Topology Appl. 151 (2005), 180-186. (2005) Zbl1069.54021MR2139751DOI10.1016/j.topol.2004.05.015
  3. van Douwen E.K., Integers in topology, Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.111-168. 
  4. van Douwen E.K., The Pixley-Roy topology on spaces of subsets, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976), 113-134, Academic Press, New York, 1977. Zbl0372.54006MR0440489
  5. van Douwen E.K., Kunen K., 10.1016/0166-8641(82)90064-5, Topology Appl. 14 (1982), 2 143-149. (1982) MR0667660DOI10.1016/0166-8641(82)90064-5
  6. Engelking R., General Topology, Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics, 6, 1989. Zbl0684.54001MR1039321
  7. Gruenhage G., Generalized metric spaces, in: Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.423-501. Zbl0794.54034MR0776629
  8. Junnila H.J.K., Künzi H.-P.A., 10.1090/S0002-9939-1993-1165056-6, Proc. Amer. Math. Soc. 119 (1993), 4 1335-1345. (1993) MR1165056DOI10.1090/S0002-9939-1993-1165056-6
  9. Levy R., Matveev M., Some examples of monotonically Lindelöf and not monotonically Lindelöf spaces, Topology Appl. 154 (2007), 2333-2343. (2007) MR2328016
  10. Matveev M., A monotonically Lindelöf space need not be monotonically normal, preprint, 1994. 
  11. Todorčević S., 10.1090/conm/084, Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. MR0980949DOI10.1090/conm/084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.