On monotone Lindelöfness of countable spaces
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 1, page 155-161
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLevy, Ronnie, and Matveev, Mikhail. "On monotone Lindelöfness of countable spaces." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 155-161. <http://eudml.org/doc/250472>.
@article{Levy2008,
abstract = {A space is monotonically Lindelöf (mL) if one can assign to every open cover $\mathcal \{U\}$ a countable open refinement $r(\mathcal \{U\})$ so that $r(\mathcal \{U\})$ refines $r(\mathcal \{V\})$ whenever $\mathcal \{U\}$ refines $\mathcal \{V\}$. We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.},
author = {Levy, Ronnie, Matveev, Mikhail},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space; Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space},
language = {eng},
number = {1},
pages = {155-161},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On monotone Lindelöfness of countable spaces},
url = {http://eudml.org/doc/250472},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Levy, Ronnie
AU - Matveev, Mikhail
TI - On monotone Lindelöfness of countable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 155
EP - 161
AB - A space is monotonically Lindelöf (mL) if one can assign to every open cover $\mathcal {U}$ a countable open refinement $r(\mathcal {U})$ so that $r(\mathcal {U})$ refines $r(\mathcal {V})$ whenever $\mathcal {U}$ refines $\mathcal {V}$. We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.
LA - eng
KW - Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space; Lindelöf; monotonically Lindelöf; tower; the countable fan space; Pixley-Roy space
UR - http://eudml.org/doc/250472
ER -
References
top- Baumgartner J.E., 10.2307/2273356, J. Symbolic Logic 45 (1980), 1 85-92. (1980) MR0560227DOI10.2307/2273356
- Bennett H., Lutzer D., Matveev M., 10.1016/j.topol.2004.05.015, Topology Appl. 151 (2005), 180-186. (2005) Zbl1069.54021MR2139751DOI10.1016/j.topol.2004.05.015
- van Douwen E.K., Integers in topology, Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.111-168.
- van Douwen E.K., The Pixley-Roy topology on spaces of subsets, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976), 113-134, Academic Press, New York, 1977. Zbl0372.54006MR0440489
- van Douwen E.K., Kunen K., 10.1016/0166-8641(82)90064-5, Topology Appl. 14 (1982), 2 143-149. (1982) MR0667660DOI10.1016/0166-8641(82)90064-5
- Engelking R., General Topology, Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics, 6, 1989. Zbl0684.54001MR1039321
- Gruenhage G., Generalized metric spaces, in: Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.423-501. Zbl0794.54034MR0776629
- Junnila H.J.K., Künzi H.-P.A., 10.1090/S0002-9939-1993-1165056-6, Proc. Amer. Math. Soc. 119 (1993), 4 1335-1345. (1993) MR1165056DOI10.1090/S0002-9939-1993-1165056-6
- Levy R., Matveev M., Some examples of monotonically Lindelöf and not monotonically Lindelöf spaces, Topology Appl. 154 (2007), 2333-2343. (2007) MR2328016
- Matveev M., A monotonically Lindelöf space need not be monotonically normal, preprint, 1994.
- Todorčević S., 10.1090/conm/084, Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. MR0980949DOI10.1090/conm/084
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.