Monotone weak Lindelöfness
Maddalena Bonanzinga; Filippo Cammaroto; Bruno Pansera
Open Mathematics (2011)
- Volume: 9, Issue: 3, page 583-592
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMaddalena Bonanzinga, Filippo Cammaroto, and Bruno Pansera. "Monotone weak Lindelöfness." Open Mathematics 9.3 (2011): 583-592. <http://eudml.org/doc/269415>.
@article{MaddalenaBonanzinga2011,
abstract = {The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.},
author = {Maddalena Bonanzinga, Filippo Cammaroto, Bruno Pansera},
journal = {Open Mathematics},
keywords = {Monotone Lindelöfness; Weak Lindelöfness; Monotone weak Lindelöfness; monotonically weakly Lindelöf space; -base; Alexandroff duplicate; Sorgenfrey line},
language = {eng},
number = {3},
pages = {583-592},
title = {Monotone weak Lindelöfness},
url = {http://eudml.org/doc/269415},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Maddalena Bonanzinga
AU - Filippo Cammaroto
AU - Bruno Pansera
TI - Monotone weak Lindelöfness
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 583
EP - 592
AB - The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.
LA - eng
KW - Monotone Lindelöfness; Weak Lindelöfness; Monotone weak Lindelöfness; monotonically weakly Lindelöf space; -base; Alexandroff duplicate; Sorgenfrey line
UR - http://eudml.org/doc/269415
ER -
References
top- [1] Bennett H., Lutzer D., Matveev M., The monotone Lindelöf property and separability in ordered spaces, Topology Appl., 2005, 151(1–3), 180–186 http://dx.doi.org/10.1016/j.topol.2004.05.015 Zbl1069.54021
- [2] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
- [3] Frolik Z., Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J., 1959, 9(84) (2), 172–217 (in Russian) Zbl0098.14201
- [4] Ge Y., Good C., A note on monotone countable paracompactness, Comment. Math. Univ. Carolin., 2001, 42(4), 771–778 Zbl1090.54504
- [5] Good C., Haynes L., Monotone versions of countable paracompactness, Topology Appl., 2007, 154(3), 734–740 http://dx.doi.org/10.1016/j.topol.2006.08.006 Zbl1118.54012
- [6] Good C., Knight R.W., Monotonically countably paracompact, collectionwise Hausdorff spaces and measurable cardinals, Proc. Amer. Math. Soc., 2006, 134(2), 591–597 http://dx.doi.org/10.1090/S0002-9939-05-07965-7 Zbl1086.54013
- [7] Good C., Knight R., Stares I., Monotone countable paracompactness, Topology Appl., 2000, 101(3), 281–298 http://dx.doi.org/10.1016/S0166-8641(98)00128-X Zbl0938.54026
- [8] Gruenhage G., Generalized metric spaces, In: Handbook of the Set-Theoretic Topology, North-Holland, Amsterdam-New York-Oxford, 1984, 423–501
- [9] Gruenhage G., Monotonically compact and monotonically Lindelöf spaces, Questions Answers Gen. Topology, 2008, 26(2), 121–130 Zbl1163.54017
- [10] Gruenhage G., Monotonically compact T 2-spaces are metrizable, Questions Answers Gen. Topology, 2009, 27(1), 57–59 Zbl1173.54011
- [11] Junnila H.J.K., Künzi H.-P.A., Ortho-bases and monotonic properties, Proc. Amer. Math. Soc., 1993, 119(4), 1335–1345 http://dx.doi.org/10.1090/S0002-9939-1993-1165056-6 Zbl0822.54023
- [12] Levy R., Matveev M., Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces, Topology Appl., 2007, 154(11), 2333–2343 http://dx.doi.org/10.1016/j.topol.2007.04.002 Zbl1134.54006
- [13] Levy R., Matveev M., On monotone Lindelöfness of countable spaces, Comment. Math. Univ. Carolin., 2008, 49(1), 155–161 Zbl1212.54077
- [14] Levy R., Matveev M., Some questions on monotone Lindelöfness, Questions Answers Gen. Topology, 2008, 26(1), 13–27 Zbl1149.54311
- [15] Matveev M., A monotonically Lindelöf space need not be monotonically normal, 1994, preprint
- [16] Pan C., Monotonically CP spaces, Questions Answers Gen. Topology, 1987, 15(1), 25–32
- [17] Stares I.S., Versions of monotone paracompactness, In: Papers on General Topology and Applications, Gorham, August 10–13, 1995, Ann. N. Y. Acad Sci., 1996, 806, 433–438
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.