Monotone weak Lindelöfness

Maddalena Bonanzinga; Filippo Cammaroto; Bruno Pansera

Open Mathematics (2011)

  • Volume: 9, Issue: 3, page 583-592
  • ISSN: 2391-5455

Abstract

top
The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.

How to cite

top

Maddalena Bonanzinga, Filippo Cammaroto, and Bruno Pansera. "Monotone weak Lindelöfness." Open Mathematics 9.3 (2011): 583-592. <http://eudml.org/doc/269415>.

@article{MaddalenaBonanzinga2011,
abstract = {The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.},
author = {Maddalena Bonanzinga, Filippo Cammaroto, Bruno Pansera},
journal = {Open Mathematics},
keywords = {Monotone Lindelöfness; Weak Lindelöfness; Monotone weak Lindelöfness; monotonically weakly Lindelöf space; -base; Alexandroff duplicate; Sorgenfrey line},
language = {eng},
number = {3},
pages = {583-592},
title = {Monotone weak Lindelöfness},
url = {http://eudml.org/doc/269415},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Maddalena Bonanzinga
AU - Filippo Cammaroto
AU - Bruno Pansera
TI - Monotone weak Lindelöfness
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 583
EP - 592
AB - The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.
LA - eng
KW - Monotone Lindelöfness; Weak Lindelöfness; Monotone weak Lindelöfness; monotonically weakly Lindelöf space; -base; Alexandroff duplicate; Sorgenfrey line
UR - http://eudml.org/doc/269415
ER -

References

top
  1. [1] Bennett H., Lutzer D., Matveev M., The monotone Lindelöf property and separability in ordered spaces, Topology Appl., 2005, 151(1–3), 180–186 http://dx.doi.org/10.1016/j.topol.2004.05.015 Zbl1069.54021
  2. [2] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989 
  3. [3] Frolik Z., Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J., 1959, 9(84) (2), 172–217 (in Russian) Zbl0098.14201
  4. [4] Ge Y., Good C., A note on monotone countable paracompactness, Comment. Math. Univ. Carolin., 2001, 42(4), 771–778 Zbl1090.54504
  5. [5] Good C., Haynes L., Monotone versions of countable paracompactness, Topology Appl., 2007, 154(3), 734–740 http://dx.doi.org/10.1016/j.topol.2006.08.006 Zbl1118.54012
  6. [6] Good C., Knight R.W., Monotonically countably paracompact, collectionwise Hausdorff spaces and measurable cardinals, Proc. Amer. Math. Soc., 2006, 134(2), 591–597 http://dx.doi.org/10.1090/S0002-9939-05-07965-7 Zbl1086.54013
  7. [7] Good C., Knight R., Stares I., Monotone countable paracompactness, Topology Appl., 2000, 101(3), 281–298 http://dx.doi.org/10.1016/S0166-8641(98)00128-X Zbl0938.54026
  8. [8] Gruenhage G., Generalized metric spaces, In: Handbook of the Set-Theoretic Topology, North-Holland, Amsterdam-New York-Oxford, 1984, 423–501 
  9. [9] Gruenhage G., Monotonically compact and monotonically Lindelöf spaces, Questions Answers Gen. Topology, 2008, 26(2), 121–130 Zbl1163.54017
  10. [10] Gruenhage G., Monotonically compact T 2-spaces are metrizable, Questions Answers Gen. Topology, 2009, 27(1), 57–59 Zbl1173.54011
  11. [11] Junnila H.J.K., Künzi H.-P.A., Ortho-bases and monotonic properties, Proc. Amer. Math. Soc., 1993, 119(4), 1335–1345 http://dx.doi.org/10.1090/S0002-9939-1993-1165056-6 Zbl0822.54023
  12. [12] Levy R., Matveev M., Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces, Topology Appl., 2007, 154(11), 2333–2343 http://dx.doi.org/10.1016/j.topol.2007.04.002 Zbl1134.54006
  13. [13] Levy R., Matveev M., On monotone Lindelöfness of countable spaces, Comment. Math. Univ. Carolin., 2008, 49(1), 155–161 Zbl1212.54077
  14. [14] Levy R., Matveev M., Some questions on monotone Lindelöfness, Questions Answers Gen. Topology, 2008, 26(1), 13–27 Zbl1149.54311
  15. [15] Matveev M., A monotonically Lindelöf space need not be monotonically normal, 1994, preprint 
  16. [16] Pan C., Monotonically CP spaces, Questions Answers Gen. Topology, 1987, 15(1), 25–32 
  17. [17] Stares I.S., Versions of monotone paracompactness, In: Papers on General Topology and Applications, Gorham, August 10–13, 1995, Ann. N. Y. Acad Sci., 1996, 806, 433–438 

NotesEmbed ?

top

You must be logged in to post comments.