Products and projective limits of function spaces

Miroslav Kačena

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 4, page 547-578
  • ISSN: 0010-2628

Abstract

top
We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions and we prove that the projective limit of simplicial spaces is simplicial.

How to cite

top

Kačena, Miroslav. "Products and projective limits of function spaces." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 547-578. <http://eudml.org/doc/250474>.

@article{Kačena2008,
abstract = {We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions and we prove that the projective limit of simplicial spaces is simplicial.},
author = {Kačena, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Choquet theory; function space; product; projective limit; simplicial space; Choquet theory; function space; product; projective limit; simplicial space},
language = {eng},
number = {4},
pages = {547-578},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products and projective limits of function spaces},
url = {http://eudml.org/doc/250474},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Kačena, Miroslav
TI - Products and projective limits of function spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 547
EP - 578
AB - We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions and we prove that the projective limit of simplicial spaces is simplicial.
LA - eng
KW - Choquet theory; function space; product; projective limit; simplicial space; Choquet theory; function space; product; projective limit; simplicial space
UR - http://eudml.org/doc/250474
ER -

References

top
  1. Alfsen E.M., Compact Convex Sets and Boundary Integrals, Springer, New York-Heidelberg, 1971. Zbl0209.42601MR0445271
  2. Batty C.J.K., 10.1093/qmath/33.1.1, Quart. J. Math. Oxford Ser. (2) 33 (1982), 1-10. (1982) Zbl0439.46008MR0689847DOI10.1093/qmath/33.1.1
  3. Behrends E., Wittstock G., 10.1007/BF01403252, Invent. Math. 10 (1970), 251-266. (1970) Zbl0197.38406MR0272693DOI10.1007/BF01403252
  4. Boboc N., Cornea A., Convex cones of lower semicontinuous functions on compact spaces, Rev. Roumaine Math. Pures Appl. 12 (1967), 471-525. (1967) Zbl0155.17301MR0216278
  5. Bourbaki N., General Topology. Chapters 1-4, 2nd printing, Springer, Berlin, 1989. Zbl1107.54001MR0979294
  6. Davies E.B., Vincent-Smith G.F., Tensor products, infinite products, and projective limits of Choquet simplexes, Math. Scand. 22 (1968), 145-164. (1968) Zbl0176.42802MR0243316
  7. Enflo P., 10.1007/BF02392270, Acta Math. 130 (1973), 309-317. (1973) Zbl0267.46012MR0402468DOI10.1007/BF02392270
  8. Fremlin D.H., Measure Theory, vol. 4, Torres Fremlin, 2003. Zbl1166.28001MR2462372
  9. Grossman M.W., 10.1090/S0002-9939-1965-0180879-0, Proc. Amer. Math. Soc. 16 (1965), 967-971. (1965) Zbl0139.06702MR0180879DOI10.1090/S0002-9939-1965-0180879-0
  10. Grossman M.W., Limits and colimits in certain categories of spaces of continuous functions, Dissertationes Math. 79 (1970). (1970) Zbl0221.46062MR0276740
  11. Hulanicki A., Phelps R.R., 10.1016/0022-1236(68)90016-5, J. Funct. Anal. 2 (1968), 177-201. (1968) Zbl0159.41504MR0225135DOI10.1016/0022-1236(68)90016-5
  12. Jacobs K., Measure and Integral, Academic Press, New York-London, 1978. Zbl0446.28001MR0514702
  13. Jellett F., 10.1007/BF01111040, Math. Z. 103 (1968), 219-226. (1968) Zbl0164.43303MR0221278DOI10.1007/BF01111040
  14. Johnson W.B., Lindenstrauss J. (Eds.), Handbook of the Geometry of Banach Spaces, Volume 1, North-Holland, Amsterdam, 2001. Zbl1013.46001MR1863689
  15. Kačena M., Spurný J., Affine images of compact convex sets and maximal measures, preprint, available at http://www.karlin.mff.cuni.cz/kma-preprints. 
  16. Lazar A.J., Affine products of simplexes, Math. Scand. 22 (1968), 165-175. (1968) Zbl0176.42803MR0251500
  17. Lazar A.J., 10.1090/S0002-9947-1968-0233188-2, Trans. Amer. Math. Soc. 134 (1968), 503-525. (1968) Zbl0174.17102MR0233188DOI10.1090/S0002-9947-1968-0233188-2
  18. Namioka I., Phelps R.R., 10.2140/pjm.1969.31.469, Pacific J. Math. 31 (1969), 469-480. (1969) MR0271689DOI10.2140/pjm.1969.31.469
  19. Semadeni Z., Banach spaces of continuous functions. Vol. I., Monografie Matematyczne, Tom 55, PWN-Polish Scientific Publishers, Warszawa, 1971. MR0296671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.