Affine Baire functions on Choquet simplices

Miroslav Kačena; Jiří Spurný

Open Mathematics (2011)

  • Volume: 9, Issue: 1, page 127-138
  • ISSN: 2391-5455

Abstract

top
We construct a metrizable simplex X such that for each n ɛ ℕ there exists a bounded function f on ext X of Baire class n that cannot be extended to a strongly affine function of Baire class n. We show that such an example cannot be constructed via the space of harmonic functions.

How to cite

top

Miroslav Kačena, and Jiří Spurný. "Affine Baire functions on Choquet simplices." Open Mathematics 9.1 (2011): 127-138. <http://eudml.org/doc/269094>.

@article{MiroslavKačena2011,
abstract = {We construct a metrizable simplex X such that for each n ɛ ℕ there exists a bounded function f on ext X of Baire class n that cannot be extended to a strongly affine function of Baire class n. We show that such an example cannot be constructed via the space of harmonic functions.},
author = {Miroslav Kačena, Jiří Spurný},
journal = {Open Mathematics},
keywords = {Baire functions; Compact convex sets; Simplex; Affine classes; Harmonic functions; compact convex sets; simplex; affine classes; harmonic functions},
language = {eng},
number = {1},
pages = {127-138},
title = {Affine Baire functions on Choquet simplices},
url = {http://eudml.org/doc/269094},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Miroslav Kačena
AU - Jiří Spurný
TI - Affine Baire functions on Choquet simplices
JO - Open Mathematics
PY - 2011
VL - 9
IS - 1
SP - 127
EP - 138
AB - We construct a metrizable simplex X such that for each n ɛ ℕ there exists a bounded function f on ext X of Baire class n that cannot be extended to a strongly affine function of Baire class n. We show that such an example cannot be constructed via the space of harmonic functions.
LA - eng
KW - Baire functions; Compact convex sets; Simplex; Affine classes; Harmonic functions; compact convex sets; simplex; affine classes; harmonic functions
UR - http://eudml.org/doc/269094
ER -

References

top
  1. [1] Alfsen E.M., Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb., 57, Springer, New York-Heidelberg, 1971 Zbl0209.42601
  2. [2] Argyros S.A., Godefroy G., Rosenthal H.P., Descriptive set theory and Banach spaces, In: Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, 1007–1069 http://dx.doi.org/10.1016/S1874-5849(03)80030-X Zbl1121.46008
  3. [3] Armitage D.H., Gardiner S.J., Classical Potential Theory, Springer Monogr. Math., Springer, London, 2001 Zbl0972.31001
  4. [4] Asimow L., Ellis A.J., Convexity Theory and its Applications in Functional Analysis, London Math. Soc. Monogr., 16, Academic Press, London-New York, 1980 Zbl0453.46013
  5. [5] Bauer H., Šilovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier Grenoble, 1961, 11, 89–136 Zbl0098.06902
  6. [6] Bauer H., Simplicial function spaces and simplexes, Exposition. Math., 1985, 3(2), 165–168 Zbl0564.46007
  7. [7] Bliedtner J., Hansen W., Simplicial characterization of elliptic harmonic spaces, Math. Ann., 1976, 222(3), 261–274 http://dx.doi.org/10.1007/BF01362583 Zbl0314.31010
  8. [8] Bliedtner J., Hansen W., Potential Theory, Universitext, Springer, Berlin, 1986 
  9. [9] Boboc N., Cornea A., Convex cones of lower semicontinuous functions on compact spaces, Rev. Roumaine Math. Pures Appl., 1967, 12, 471–525 Zbl0155.17301
  10. [10] Capon M., Sur les fonctions qui verifient le calcul barycentrique, Proc. Lond. Math. Soc., 1976, 32(1), 163–180 http://dx.doi.org/10.1112/plms/s3-32.1.163 Zbl0313.46003
  11. [11] Choquet G., Lectures on Analysis I–III, W.A. Benjamin, New York-Amsterdam, 1969 Zbl0181.39602
  12. [12] Fremlin D.H., Measure Theory, vol. 4, Torres Fremlin, Colchester, 2003 
  13. [13] Johnson W.B., Lindenstrauss J., Basic concepts in the geometry of Banach spaces, In: Handbook of the geometry of Banach spaces, 1, North-Holland, Amsterdam, 2001, 1–84 http://dx.doi.org/10.1016/S1874-5849(01)80003-6 Zbl1011.46009
  14. [14] Kačena M., Products and projective limits of function spaces, Comment. Math. Univ. Carolin., 2008, 49(4), 547–578 Zbl1212.46016
  15. [15] Kechris A.S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995 Zbl0819.04002
  16. [16] Lacey H.E., The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss., 208, Springer, Berlin-Heidelberg-New York, 1974 Zbl0285.46024
  17. [17] Lukeš J., Malý J., Netuka I., Smrčka M., Spurný J., On approximation of affine Baire-one functions, Israel J. Math., 2003, 134(1), 255–287 http://dx.doi.org/10.1007/BF02787408 Zbl1031.35011
  18. [18] Phelps R.R., Lectures on Choquet's Theorem, Van Nostrand, Princeton-Toronto-New York-London, 1966 Zbl0135.36203
  19. [19] Spurný J., Affine Baire-one functions on Choquet simplexes, Bull. Aust. Math. Soc., 2005, 71(2), 235–258 http://dx.doi.org/10.1017/S0004972700038211 Zbl1075.46005
  20. [20] Spurný J., On the Dirichlet problem of extreme points for non-continuous functions, Israel J. Math., 2009, 173(1), 403–419 http://dx.doi.org/10.1007/s11856-009-0098-6 Zbl1190.46009
  21. [21] Spurný J., The Dirichlet problem for Baire-two functions on simplices, Bull. Aust. Math. Soc., 2009, 79(2), 285–297 http://dx.doi.org/10.1017/S0004972708001263 Zbl1180.46006
  22. [22] Spurný J., Baire classes of Banach spaces and strongly affine functions, Trans. Amer. Math. Soc., 2010, 362(3), 1659–1680 http://dx.doi.org/10.1090/S0002-9947-09-04841-7 Zbl1215.46009
  23. [23] Talagrand M., A new type of affine Borel function, Math. Scand., 1984, 54(2), 183–188 Zbl0562.46005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.