Invariant prolongation of BGG-operators in conformal geometry
Archivum Mathematicum (2008)
- Volume: 044, Issue: 5, page 367-384
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHammerl, Matthias. "Invariant prolongation of BGG-operators in conformal geometry." Archivum Mathematicum 044.5 (2008): 367-384. <http://eudml.org/doc/250507>.
@article{Hammerl2008,
abstract = {BGG-operators form sequences of invariant differential operators and the first of these is overdetermined. Interesting equations in conformal geometry described by these operators are those for Einstein scales, conformal Killing forms and conformal Killing tensors. We present a deformation procedure of the tractor connection which yields an invariant prolongation of the first operator. The explicit calculation is presented in the case of conformal Killing forms.},
author = {Hammerl, Matthias},
journal = {Archivum Mathematicum},
keywords = {conformal geometry; invariant differential operators; overdetermined systems; prolongation; tractor calculus; conformal geometry; invariant differential operator; overdetermined system; prolongation; tractor calculus},
language = {eng},
number = {5},
pages = {367-384},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariant prolongation of BGG-operators in conformal geometry},
url = {http://eudml.org/doc/250507},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Hammerl, Matthias
TI - Invariant prolongation of BGG-operators in conformal geometry
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 367
EP - 384
AB - BGG-operators form sequences of invariant differential operators and the first of these is overdetermined. Interesting equations in conformal geometry described by these operators are those for Einstein scales, conformal Killing forms and conformal Killing tensors. We present a deformation procedure of the tractor connection which yields an invariant prolongation of the first operator. The explicit calculation is presented in the case of conformal Killing forms.
LA - eng
KW - conformal geometry; invariant differential operators; overdetermined systems; prolongation; tractor calculus; conformal geometry; invariant differential operator; overdetermined system; prolongation; tractor calculus
UR - http://eudml.org/doc/250507
ER -
References
top- Bailey, T. N., Eastwood, M. G., Gover, A. Rod, 10.1216/rmjm/1181072333, Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. (1994) MR1322223DOI10.1216/rmjm/1181072333
- Branson, T., Čap, A., Eastwood, M., Gover, A. R., 10.1142/S0129167X06003655, Int. J. Math. 17 (6) (2006), 641–664. (2006) Zbl1101.35060MR2246885DOI10.1142/S0129167X06003655
- Calderbank, D. M. J., Diemer, T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103. (2001) Zbl0985.58002MR1856258
- Čap, A., Infinitesimal automorphisms and deformations of parabolic geometries, J. Europ. Math. Soc., to appear. MR2390330
- Čap, A., Overdetermined systems, conformal geometry, and the BGG complex, Symmetries and Overdetermined Systems of Partial Differential Equations (Eastwood, M. G., Millor, W., eds.), vol. 144, The IMA Volumes in Mathematics and its Applications, Springer, 2008, pp. 1–25. (2008)
- Čap, A., Gover, A. R., Tractor bundles for irreducible parabolic geometries, Global analysis and harmonic analysis (Marseille-Luminy, 1999), vol. 4 of Sémin. Congr., Soc. Math. France, Paris, 2000, pp. 129–154. (2000) MR1822358
- Čap, A., Gover, A. R., 10.1090/S0002-9947-01-02909-9, Trans. Amer. Math. Soc. 354 (4) (2002), 1511–1548, electronic. (2002) Zbl0997.53016MR1873017DOI10.1090/S0002-9947-01-02909-9
- Čap, A., Slovák, J., Souček, V., 10.2307/3062111, Ann. of Math. 154 (1) (2001), 97–113. (2001) Zbl1159.58309MR1847589DOI10.2307/3062111
- Eastwood, M., 10.4007/annals.2005.161.1645, Ann. of Math. (2) 161 (3) (2005), 1645–1665. (2005) Zbl1091.53020MR2180410DOI10.4007/annals.2005.161.1645
- Gover, A. R., 10.1007/s00208-006-0004-z, Math. Ann. 336 (2) (2006), 311–334. (2006) Zbl1125.53032MR2244375DOI10.1007/s00208-006-0004-z
- Gover, A. R., Nurowski, P., 10.1016/j.geomphys.2005.03.001, J. Geom. Phys. 56 (3) (2006), 450–484. (2006) Zbl1098.53014MR2171895DOI10.1016/j.geomphys.2005.03.001
- Gover, A. R., Šilhan, J., The conformal Killing equation on forms – prolongations and applications, Diff. Geom. Appl., to appear.
- Kashiwada, T., On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67–74. (1968) Zbl0179.26902MR0243458
- Kostant, B., 10.2307/1970237, Ann. of Math. (2) 74 (1961), 329–387. (1961) Zbl0134.03501MR0142696DOI10.2307/1970237
- Leitner, F., Conformal Killing forms with normalisation condition, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 279–292. (2005) Zbl1101.53040MR2152367
- Penrose, R., Rindler, W., Spinors and space-time, Two-spinor calculus and relativistic fields, vol. 1, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987. (1987) Zbl0663.53013MR0917488
- Semmelmann, U., 10.1007/s00209-003-0549-4, Math. Z. 245 (3) (2003), 503–527. (2003) Zbl1061.53033MR2021568DOI10.1007/s00209-003-0549-4
- Šilhan, J., Invariant operators in conformal geometry, Ph.D. thesis, University of Auckland, 2006. (2006)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.