Smooth metric measure spaces, quasi-Einstein metrics, and tractors
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1733-1762
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJeffrey Case. "Smooth metric measure spaces, quasi-Einstein metrics, and tractors." Open Mathematics 10.5 (2012): 1733-1762. <http://eudml.org/doc/269512>.
@article{JeffreyCase2012,
abstract = {We introduce the tractor formalism from conformal geometry to the study of smooth metric measure spaces. In particular, this gives rise to a correspondence between quasi-Einstein metrics and parallel sections of certain tractor bundles. We use this formulation to give a sharp upper bound on the dimension of the vector space of quasi-Einstein metrics, providing a different perspective on some recent results of He, Petersen and Wylie.},
author = {Jeffrey Case},
journal = {Open Mathematics},
keywords = {Smooth metric measure space; Quasi-Einstein; Tractor bundle; Warped product; Holonomy; smooth metric measure space; quasi-Einstein; tractor bundle; holonomy},
language = {eng},
number = {5},
pages = {1733-1762},
title = {Smooth metric measure spaces, quasi-Einstein metrics, and tractors},
url = {http://eudml.org/doc/269512},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Jeffrey Case
TI - Smooth metric measure spaces, quasi-Einstein metrics, and tractors
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1733
EP - 1762
AB - We introduce the tractor formalism from conformal geometry to the study of smooth metric measure spaces. In particular, this gives rise to a correspondence between quasi-Einstein metrics and parallel sections of certain tractor bundles. We use this formulation to give a sharp upper bound on the dimension of the vector space of quasi-Einstein metrics, providing a different perspective on some recent results of He, Petersen and Wylie.
LA - eng
KW - Smooth metric measure space; Quasi-Einstein; Tractor bundle; Warped product; Holonomy; smooth metric measure space; quasi-Einstein; tractor bundle; holonomy
UR - http://eudml.org/doc/269512
ER -
References
top- [1] Alt J., The geometry of conformally Einstein metrics with degenerate Weyl tensor, http://arxiv.org/abs/math/0608598
- [2] Armstrong S., Definite signature conformal holonomy: a complete classification, J. Geom. Phys., 2007, 57(10), 2024–2048 http://dx.doi.org/10.1016/j.geomphys.2007.05.001 Zbl05201910
- [3] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333 Zbl0828.53012
- [4] Bakry D., Émery M., Diffusions hypercontractives, In: Séminaire de Probabilités, 19, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 http://dx.doi.org/10.1007/BFb0075847
- [5] Baum H., Juhl A., Conformal Differential Geometry, Oberwolfach Seminars, 40, Birkhäuser, Basel, 2010 Zbl1189.53045
- [6] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, Berlin, 1987
- [7] Böhm C., Non-compact cohomogeneity one Einstein manifolds, Bull. Soc. Math. France, 1999, 127(1), 135–177 Zbl0935.53021
- [8] Branson T., Čap A., Eastwood M., Gover A.R., Prolongations of geometric overdetermined systems, Internat. J. Math., 2006, 17(6), 641–664 http://dx.doi.org/10.1142/S0129167X06003655 Zbl1101.35060
- [9] Branson T., Gover A.R., Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Comm. Partial Differential Equations, 2005, 30(10–12), 1611–1669 http://dx.doi.org/10.1080/03605300500299943 Zbl1226.58011
- [10] Cao H.-D., Chen Q., On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc., 2012, 364(5), 2377–2391 http://dx.doi.org/10.1090/S0002-9947-2011-05446-2 Zbl1245.53038
- [11] Čap A., Gover A.R., Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc., 2002, 354(4), 1511–1548 http://dx.doi.org/10.1090/S0002-9947-01-02909-9 Zbl0997.53016
- [12] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 Zbl1183.53002
- [13] Case J.S., Smooth metric measure spaces and quasi-Einstein metrics, preprint available at http://arxiv.org/abs/1011.2723
- [14] Case J.S., The energy of a smooth metric measure space and applications, preprint available at http://arxiv.org/abs/1011.2728
- [15] Case J.S., Sharp metric obstructions for quasi-Einstein metrics, preprint available at http://arxiv.org/abs/1110.3010
- [16] Case J., Shu Y.-J., Wei G., Rigidity of quasi-Einstein metrics, Differential Geom. Appl., 2011, 29(1), 93–100 http://dx.doi.org/10.1016/j.difgeo.2010.11.003 Zbl1215.53033
- [17] Catino G., Generalized quasi-Einstein manifolds with harmonic Weyl tensor, preprint available at http://arxiv.org/abs/1012.5405 Zbl1246.53040
- [18] Catino G., Mantegazza C., Mazzieri L., Rimoldi M., Locally conformally flat quasi-Einstein manifolds, preprint available at http://arxiv.org/abs/1010.1418 Zbl1277.53039
- [19] Chang S.-Y.A., Conformal invariants and partial differential equations, Bull. Amer. Math. Soc., 2005, 42(3), 365–393 http://dx.doi.org/10.1090/S0273-0979-05-01058-X
- [20] Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 1997, 46(3), 406–480 Zbl0902.53034
- [21] Corvino J., Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys., 2000, 214(1), 137–189 http://dx.doi.org/10.1007/PL00005533 Zbl1031.53064
- [22] Gover A.R., Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys., 2010, 60(2), 182–204 http://dx.doi.org/10.1016/j.geomphys.2009.09.016 Zbl1194.53038
- [23] Gover A.R., Nurowski P., Obstructions to conformally Einstein metrics in n dimensions, J. Geom. Phys., 2006, 56(3), 450–484 http://dx.doi.org/10.1016/j.geomphys.2005.03.001 Zbl1098.53014
- [24] Gover A.R., Peterson L.J., Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Comm. Math. Phys., 2003, 235(2), 339–378 http://dx.doi.org/10.1007/s00220-002-0790-4 Zbl1022.58014
- [25] Hammerl M., Invariant prolongation of BGG-operators in conformal geometry, Arch. Math. (Brno), 2008, 44(5), 367–384 Zbl1212.53014
- [26] Hammerl M., Somberg P., Souček V., Šilhan J., On a new normalization for tractor covariant derivatives, preprint available at http://arxiv.org/abs/1003.6090 Zbl1264.58029
- [27] He C., Petersen P., Wylie W., On the classification of warped product Einstein metrics, preprint available at http://arxiv.org/abs/1010.5488 Zbl1270.53075
- [28] He C., Petersen P., Wylie W., The space of virtual solutions to the warped product Einstein equation, preprint available at http://arxiv.org/abs/1110.2456
- [29] Kim D.-S., Kim Y.H., Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc., 2003, 131(8), 2573–2576 http://dx.doi.org/10.1090/S0002-9939-03-06878-3 Zbl1029.53027
- [30] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 Zbl0119.37502
- [31] Miao P., Tam L.-F., On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. Partial Differential Equations, 2009, 36(2), 141–171 http://dx.doi.org/10.1007/s00526-008-0221-2 Zbl1175.49043
- [32] Miao P., Tam L.-F., Einstein and conformally flat critical metrics of the volume functional, Trans. Amer. Math. Soc., 2011, 363(6), 2907–2937 http://dx.doi.org/10.1090/S0002-9947-2011-05195-0 Zbl1222.53041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.