On Hermite-Hermite matrix polynomials
M. S. Metwally; M. T. Mohamed; A. Shehata
Mathematica Bohemica (2008)
- Volume: 133, Issue: 4, page 421-434
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMetwally, M. S., Mohamed, M. T., and Shehata, A.. "On Hermite-Hermite matrix polynomials." Mathematica Bohemica 133.4 (2008): 421-434. <http://eudml.org/doc/250535>.
@article{Metwally2008,
abstract = {In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite matrix polynomials is proposed.},
author = {Metwally, M. S., Mohamed, M. T., Shehata, A.},
journal = {Mathematica Bohemica},
keywords = {matrix functions; Hermite matrix polynomials; recurrence relation; Hermite matrix differential equation; Rodrigues's formula; Hermite-Hermite matrix polynomials; recurrence relation; Hermite matrix differential equation; Rodrigues's formula},
language = {eng},
number = {4},
pages = {421-434},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hermite-Hermite matrix polynomials},
url = {http://eudml.org/doc/250535},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Metwally, M. S.
AU - Mohamed, M. T.
AU - Shehata, A.
TI - On Hermite-Hermite matrix polynomials
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 4
SP - 421
EP - 434
AB - In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite matrix polynomials is proposed.
LA - eng
KW - matrix functions; Hermite matrix polynomials; recurrence relation; Hermite matrix differential equation; Rodrigues's formula; Hermite-Hermite matrix polynomials; recurrence relation; Hermite matrix differential equation; Rodrigues's formula
UR - http://eudml.org/doc/250535
ER -
References
top- Batahan, R. S., A new extension of Hermite matrix polynomials and its applications, Linear Algebra Appl. 419 (2006), 82-92. (2006) Zbl1106.15016MR2263112
- Defez, E., Jódar, L., 10.1016/S0377-0427(98)00149-6, J. Comput. Appl. Math. 99 (1998), 105-117. (1998) MR1662687DOI10.1016/S0377-0427(98)00149-6
- Defez, E., Hervás, A., Jódar, L., Law, A., 10.1016/j.mcm.2003.11.004, Math. Computer Modelling 40 (2004), 117-125. (2004) Zbl1061.33007MR2091530DOI10.1016/j.mcm.2003.11.004
- Jódar, L., Company, R., Hermite matrix polynomials and second order matrix differential equations, J. Approx. Theory Appl. 12 (1996), 20-30. (1996) MR1465570
- Jódar, L., Defez, E., Some new matrix formulas related to Hermite matrix polynomials theory, Proceedings International Workshop on Orthogonal Polynomials in Mathematical Physics, Leganés, 1996 M. Alfaro Universidad Carlos III. de Madrid, Servicio de Publicaciones, 1997 93-101. MR1466771
- Jódar, L., Defez, E., 10.1016/S0893-9659(97)00125-0, Appl. Math. Lett. 11 (1998), 13-17. (1998) Zbl1074.33011MR1490373DOI10.1016/S0893-9659(97)00125-0
- Jódar, L., Defez, E., On Hermite matrix polynomials and Hermite matrix functions, J. Approx. Theory Appl. 14 (1998), 36-48. (1998) MR1651470
- Lebedev, N. N., Special Functions and Their Applications, Dover, New York (1972). (1972) Zbl0271.33001MR0350075
- Rainville, E. D., Special Functions, Macmillan, New York (1962). (1962) MR0107725
- Sayyed, K. A. M., Metwally, M. S., Batahan, R. S., On generalized Hermite matrix polynomials, Electron. J. Linear Algebra 10 (2003), 272-279. (2003) Zbl1038.33005MR2025009
- Sayyed, K. A. M., Metwally, M. S., Batahan, R. S., Gegenbauer matrix polynomials and second order matrix differential equations, Divulg. Mat. 12 (2004), 101-115. (2004) Zbl1102.33010MR2123993
- Srivastava, H. M., Manocha, H. L., A Treatise on Generating Functions, Ellis Horwood, New York (1984). (1984) Zbl0535.33001MR0750112
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.