Page 1

Displaying 1 – 11 of 11

Showing per page

Bounds of the matrix eigenvalues and its exponential by Lyapunov equation

Guang-Da Hu, Taketomo Mitsui (2012)

Kybernetika

We are concerned with bounds of the matrix eigenvalues and its exponential. Combining the Lyapunov equation with the weighted logarithmic matrix norm technique, four sequences are presented to locate eigenvalues of a matrix. Based on the relations between the real parts of the eigenvalues and the weighted logarithmic matrix norms, we derive both lower and upper bounds of the matrix exponential, which complement and improve the existing results in the literature. Some numerical examples are also...

Explicit formulas for the constituent matrices. Application to the matrix functions

R. Ben Taher, M. Rachidi (2015)

Special Matrices

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided.

Matrix rank/inertia formulas for least-squares solutions with statistical applications

Yongge Tian, Bo Jiang (2016)

Special Matrices

Least-Squares Solution (LSS) of a linear matrix equation and Ordinary Least-Squares Estimator (OLSE) of unknown parameters in a general linear model are two standard algebraical methods in computational mathematics and regression analysis. Assume that a symmetric quadratic matrix-valued function Φ(Z) = Q − ZPZ0 is given, where Z is taken as the LSS of the linear matrix equation AZ = B. In this paper, we establish a group of formulas for calculating maximum and minimum ranks and inertias of Φ(Z)...

On Hermite-Hermite matrix polynomials

M. S. Metwally, M. T. Mohamed, A. Shehata (2008)

Mathematica Bohemica

In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite matrix polynomials is proposed.

Currently displaying 1 – 11 of 11

Page 1