Some relations satisfied by Hermite-Hermite matrix polynomials
Ayman Shehata; Lalit Mohan Upadhyaya
Mathematica Bohemica (2017)
- Volume: 142, Issue: 2, page 145-162
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topShehata, Ayman, and Upadhyaya, Lalit Mohan. "Some relations satisfied by Hermite-Hermite matrix polynomials." Mathematica Bohemica 142.2 (2017): 145-162. <http://eudml.org/doc/288105>.
@article{Shehata2017,
abstract = {The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite matrix polynomials. Finally, we establish general families and several new results concerning generalized Hermite-Hermite matrix polynomials.},
author = {Shehata, Ayman, Upadhyaya, Lalit Mohan},
journal = {Mathematica Bohemica},
keywords = {Hermite-Hermite polynomials; matrix generating functions; orthogonality property; Rodrigues formula; associated Hermite-Hermite polynomials; generalized Hermite-Hermite matrix polynomials; generalized Hermite matrix polynomials; generating matrix function; matrix recurrence relations; generalized Chebyshev and Legendre matrix polynomials},
language = {eng},
number = {2},
pages = {145-162},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some relations satisfied by Hermite-Hermite matrix polynomials},
url = {http://eudml.org/doc/288105},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Shehata, Ayman
AU - Upadhyaya, Lalit Mohan
TI - Some relations satisfied by Hermite-Hermite matrix polynomials
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 2
SP - 145
EP - 162
AB - The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite matrix polynomials. Finally, we establish general families and several new results concerning generalized Hermite-Hermite matrix polynomials.
LA - eng
KW - Hermite-Hermite polynomials; matrix generating functions; orthogonality property; Rodrigues formula; associated Hermite-Hermite polynomials; generalized Hermite-Hermite matrix polynomials; generalized Hermite matrix polynomials; generating matrix function; matrix recurrence relations; generalized Chebyshev and Legendre matrix polynomials
UR - http://eudml.org/doc/288105
ER -
References
top- Defez, E., Jódar, L., Chebyshev matrix polynomials and second order matrix differential equations, Util. Math. 61 (2002), 107-123. (2002) Zbl0998.15034MR1899321
- Defez, E., Jódar, L., Law, A., 10.1016/j.camwa.2004.01.011, Comput. Math. Appl. 48 (2004), 789-803. (2004) Zbl1069.33007MR2105252DOI10.1016/j.camwa.2004.01.011
- Defez, E., Jódar, L., Law, A., Ponsoda, E., Three-term recurrences and matrix orthogonal polynomials, Util. Math. 57 (2000), 129-146. (2000) Zbl0962.05064MR1760180
- Dunford, N., Schwartz, J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). (1958) Zbl0084.10402MR0117523
- Durán, A. J., Assche, W. Van, 10.1016/0024-3795(93)00218-O, Linear Algebra Appl. 219 (1995), 261-280. (1995) Zbl0827.15027MR1327404DOI10.1016/0024-3795(93)00218-O
- Jódar, L., Company, R., Hermite matrix polynomials and second order matrix differential equations, Approximation Theory Appl. 12 (1996), 20-30. (1996) Zbl0858.15014MR1465570
- Jódar, L., Company, R., Navarro, E., 10.1016/0168-9274(94)00012-3, Appl. Numer. Math. 15 (1994), 53-63. (1994) Zbl0821.34010MR1290597DOI10.1016/0168-9274(94)00012-3
- Jódar, L., Company, R., Ponsoda, E., Orthogonal matrix polynomials and systems of second order differential equations, Differ. Equ. Dyn. Syst. 3 (1995), 269-288. (1995) Zbl0892.33004MR1386749
- Jódar, L., Defez, E., On Hermite matrix polynomials and Hermite matrix function, Approximation Theory Appl. 14 (1998), 36-48. (1998) Zbl0911.15015MR1651470
- Khammash, G. S., Shehata, A., On Humbert matrix polynomials, Asian J. Current Engineering and Maths. (AJCEM) 1 (2012), 232-240. (2012)
- Metwally, M. S., Mohamed, M. T., Shehata, A., On Hermite-Hermite matrix polynomials, Math. Bohem. 133 (2008), 421-434. (2008) Zbl1199.15079MR2472489
- Metwally, M. S., Mohamed, M. T., Shehata, A., 10.15352/bjma/1297117251, Banach J. Math. Anal. (eletronic only) 4 (2010), 169-178. (2010) Zbl1190.33016MR2644026DOI10.15352/bjma/1297117251
- Rainville, E. D., Special Functions, Macmillan, New York (1960). (1960) Zbl0092.06503MR0107725
- Sayyed, K. A. M., Metwally, M. S., Batahan, R. S., On generalized Hermite matrix polynomials, Electron. J. Linear Algebra (eletronic only) 10 (2003), 272-279. (2003) Zbl1038.33005MR2025009
- Shehata, A., 10.4236/am.2011.212203, Appl. Math., Irvine 2 (2011), 1437-1442. (2011) MR3000027DOI10.4236/am.2011.212203
- Shehata, A., On Tricomi and Hermite-Tricomi matrix functions of complex variable, Commun. Math. Appl. 2 (2011), 97-109. (2011) Zbl1266.33012MR3000027
- Shehata, A., A new extension of Gegenbauer matrix polynomials and their properties, Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. (2012) MR3149829
- Shehata, A., A new extension of Hermite-Hermite matrix polynomials and their properties, Thai J. Math. 10 (2012), 433-444. (2012) Zbl1254.33005MR3001864
- Shehata, A., On pseudo Legendre matrix polynomials, Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. (2012) MR3057762
- Shehata, A., 10.4236/am.2013.41016, Appl. Math., Irvine 4 (2013), 91-96. (2013) DOI10.4236/am.2013.41016
- Shehata, A., On Rainville's matrix polynomials, Sylwan Journal 158 (2014), 158-178. (2014) MR3248615
- Shehata, A., 10.1007/s13370-013-0149-3, Afr. Mat. 25 (2014), 757-777. (2014) Zbl06369945MR3248615DOI10.1007/s13370-013-0149-3
- Shehata, A., Connections between Legendre with Hermite and Laguerre matrix polynomials, Gazi University Journal of Science 28 (2015), 221-230. Avaible at http://gujs.gazi.edu.tr/article/view/1060001688/5000116963. (2015)
- Shehata, A., 10.9734/BJMCS/2015/11492, British Journal of Mathematics and Computer Science. 5 (2015), 92-103. (2015) MR3723826DOI10.9734/BJMCS/2015/11492
- Shehata, A., On a new family of the extended generalized Bessel-type matrix polynomials, Mitteilungen Klosterneuburg J. 65 (2015), 100-121. (2015)
- Shehata, A., 10.18488/journal.76/2015.2.1/76.1.1.21, Review of Computer Engineering Research 2 (2015), 1-21. Avaible at http://www.pakinsight.com/pdf-files/RCER-2015-2%281%29-1-21.pdf. (2015) DOI10.18488/journal.76/2015.2.1/76.1.1.21
- Shehata, A., 10.21136/MB.2016.0019-14, Math. Bohem. 141 (2016), 407-429. (2016) Zbl06674853MR3576790DOI10.21136/MB.2016.0019-14
- Shehata, A., 10.18514/MMN.2016.1126, Miskolc Math. Notes 17 (2016), 605-633. (2016) MR3527907DOI10.18514/MMN.2016.1126
- Sinap, A., Assche, W. Van, 10.1016/0377-0427(95)00193-X, Proc. 6th Int. Congress on Computational and Applied Mathematics (F. Broeckx at al., eds). Leuven, 1994 J. Comput. Appl. Math. 66, Elsevier Science, Amsterdam (1996), 27-52. (1996) Zbl0863.42018MR1393717DOI10.1016/0377-0427(95)00193-X
- Upadhyaya, L. M., Shehata, A., On Legendre matrix polynomials and its applications, Inter. Tran. Math. Sci. Comput. 4 (2011), 291-310. (2011) MR3057762
- Upadhyaya, L. M., Shehata, A., 10.1007/s40840-014-0010-3, Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. (2015) Zbl06418341MR3394046DOI10.1007/s40840-014-0010-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.