A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions
Christine Bernardi; Frédéric Hecht; Rüdiger Verfürth
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 6, page 1185-1201
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBernardi, Christine, Hecht, Frédéric, and Verfürth, Rüdiger. "A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis 43.6 (2009): 1185-1201. <http://eudml.org/doc/250614>.
@article{Bernardi2009,
abstract = {
We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.
},
author = {Bernardi, Christine, Hecht, Frédéric, Verfürth, Rüdiger},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Three-dimensional Navier–Stokes equations; mixed boundary conditions; finite element methods; a priori error estimates; a posteriori error estimates.; three-dimensional Navier-Stokes equations; a priori error estimates; a posteriori error estimates},
language = {eng},
month = {8},
number = {6},
pages = {1185-1201},
publisher = {EDP Sciences},
title = {A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions},
url = {http://eudml.org/doc/250614},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Bernardi, Christine
AU - Hecht, Frédéric
AU - Verfürth, Rüdiger
TI - A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2009/8//
PB - EDP Sciences
VL - 43
IS - 6
SP - 1185
EP - 1201
AB -
We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.
LA - eng
KW - Three-dimensional Navier–Stokes equations; mixed boundary conditions; finite element methods; a priori error estimates; a posteriori error estimates.; three-dimensional Navier-Stokes equations; a priori error estimates; a posteriori error estimates
UR - http://eudml.org/doc/250614
ER -
References
top- M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Comput.73 (2003) 1673–1697.
- M. Amara, D. Capatina-Papaghiuc and D. Trujillo, Stabilized finite element method for the Navier-Stokes equations with physical boundary conditions. Math. Comput.76 (2007) 1195–1217.
- C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci.21 (1998) 823–864.
- C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in Nonlinear Partial Differential Equations and their Applications, Collège de France SeminarIX, H. Brezis and J.-L. Lions Eds., Pitman (1988) 179–264.
- C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications45. Springer (2004).
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics15. Springer, Berlin (1991).
- F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math.36 (1980/1981) 1–25.
- C. Conca, C. Parés, O. Pironneau and M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes. Internat. J. Numer. Methods Fluids20 (1995) 267–287.
- M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domain. Math. Meth. Appl. Sci.12 (1990) 365–368.
- M. Costabel and M. Dauge, Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, Springer (2004) 125–161.
- F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci.25 (2002) 1091–1119.
- F. Dubois, M. Salaün and S. Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl.82 (2003) 1395–1451.
- K.O. Friedrichs, Differential forms on Riemannian manifolds. Comm. Pure Appl. Math.8 (1955) 551–590.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer (1986).
- F. Hecht, A. Le Hyaric, K. Ohtsuka and O. Pironneau, Freefem++. Second edition, v. 3.0-1, Université Pierre et Marie Curie, Paris, France (2007), . URIhttp://www.freefem.org/ff++/ftp/freefem++doc.pdf
- O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications13. Springer (1993).
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications1. Dunod (1968).
- M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domain, Dekker (1995) 185–201.
- J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math.69 (1994) 213–231.
- S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (1999).
- F. Trèves, Basic Linear Partial Differential Equations. Academic Press (1975).
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley (1996).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.