Matchings and the variance of Lipschitz functions
ESAIM: Probability and Statistics (2009)
- Volume: 13, page 400-408
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBarthe, Franck, and O'Connell, Neil. "Matchings and the variance of Lipschitz functions." ESAIM: Probability and Statistics 13 (2009): 400-408. <http://eudml.org/doc/250654>.
@article{Barthe2009,
abstract = {
We are interested in the rate function of the moderate deviation principle
for the two-sample matching problem. This is related to the determination of 1-Lipschitz
functions with maximal variance. We give an exact solution for random variables which have
normal law, or are uniformly distributed on the Euclidean ball.
},
author = {Barthe, Franck, O'Connell, Neil},
journal = {ESAIM: Probability and Statistics},
keywords = {Matching problem; large deviations; variance; spectral gap; Euclidean ball.; matching problem; Euclidean ball},
language = {eng},
month = {9},
pages = {400-408},
publisher = {EDP Sciences},
title = {Matchings and the variance of Lipschitz functions},
url = {http://eudml.org/doc/250654},
volume = {13},
year = {2009},
}
TY - JOUR
AU - Barthe, Franck
AU - O'Connell, Neil
TI - Matchings and the variance of Lipschitz functions
JO - ESAIM: Probability and Statistics
DA - 2009/9//
PB - EDP Sciences
VL - 13
SP - 400
EP - 408
AB -
We are interested in the rate function of the moderate deviation principle
for the two-sample matching problem. This is related to the determination of 1-Lipschitz
functions with maximal variance. We give an exact solution for random variables which have
normal law, or are uniformly distributed on the Euclidean ball.
LA - eng
KW - Matching problem; large deviations; variance; spectral gap; Euclidean ball.; matching problem; Euclidean ball
UR - http://eudml.org/doc/250654
ER -
References
top- M. Ajtai, J. Komlós and G. Tusnády, On optimal matchings. Combinatorica 4 (1984) 259–264. Zbl0562.60012
- S.G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal.163 (1999) 1–28. Zbl0924.46027
- R.M. Dudley, The speed of mean Glivenko-Cantelli convergence. Ann. Math. Stat. 40 (1969) 40–50. Zbl0184.41401
- A. Ganesh and N. O'Connell, Large and moderate deviations for matching problems and empirical discrepancies. Markov Process. Relat. Fields13 (2007) 85–98. Zbl1156.60019
- M. Ledoux, Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré, Probab. Statist.28 (1992) 267–280. Zbl0751.60009
- M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités, XXXIII, Lect. Notes Math.1709 120–216. Springer, Berlin (1999). Zbl0957.60016
- C. Müller, Spherical harmonics IV. Springer-Verlag, Berlin-Heidelberg-New York (1966). Zbl0138.05101
- C. Müller and F. Weissler, Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Funct. Anal.48 (1982) 252–283. Zbl0506.46022
- S.T. Rachev, Probability Metrics and the Stability of Stochastic Models. Wiley (1991). Zbl0744.60004
- P.W. Shor, Random planar matching and bin packing , Ph.D. thesis, M.I.T., 1985.
- M. Talagrand, Matching theorems and empirical discrepancy computations using majorizing measures. J. Amer. Math. Soc. 7 (1994) 455–537. Zbl0810.60036
- M. Talagrand, Transportation cost for Gaussian and other product measures. Geom. Funct. Anal.6 (1996) 587–600. Zbl0859.46030
- L. Wu, Large deviations, moderate deviations and LIL for empirical processes. Ann. Probab.22 (1994) 17–27. Zbl0793.60032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.