On the geometry of some para-hypercomplex Lie groups

H. R. Salimi Moghaddam

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 3, page 159-170
  • ISSN: 0044-8753

Abstract

top
In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature.

How to cite

top

Salimi Moghaddam, H. R.. "On the geometry of some para-hypercomplex Lie groups." Archivum Mathematicum 045.3 (2009): 159-170. <http://eudml.org/doc/250690>.

@article{SalimiMoghaddam2009,
abstract = {In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature.},
author = {Salimi Moghaddam, H. R.},
journal = {Archivum Mathematicum},
keywords = {para-hypercomplex structure; left invariant Riemannian metric; Randers metric; Berwald metric; sectional curvature; flag curvature; para-hypercomplex structure; left invariant Riemannian metric; Randers metric; Berwald metric; sectional curvature; flag curvature},
language = {eng},
number = {3},
pages = {159-170},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the geometry of some para-hypercomplex Lie groups},
url = {http://eudml.org/doc/250690},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Salimi Moghaddam, H. R.
TI - On the geometry of some para-hypercomplex Lie groups
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 3
SP - 159
EP - 170
AB - In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature.
LA - eng
KW - para-hypercomplex structure; left invariant Riemannian metric; Randers metric; Berwald metric; sectional curvature; flag curvature; para-hypercomplex structure; left invariant Riemannian metric; Randers metric; Berwald metric; sectional curvature; flag curvature
UR - http://eudml.org/doc/250690
ER -

References

top
  1. Antonelli, P. L., Ingarden, R. S., Matsumoto, M., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, 1993. (1993) Zbl0821.53001MR1273129
  2. Asanov, G. S., Finsler Geometry, Relativity and Gauge Theories, D. Reidel Publishing Company, 1985. (1985) Zbl0576.53001MR0827217
  3. Bao, D., Chern, S. S., Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, Berlin, 2000. (2000) Zbl0954.53001MR1747675
  4. Barberis, M. L., 10.1090/S0002-9939-97-03611-3, Proc. Amer. Math. Soc. 125 (4) (1997), 1043–1054. (1997) Zbl0882.53047MR1353375DOI10.1090/S0002-9939-97-03611-3
  5. Barberis, M. L., 10.1023/A:1022448007111, Math. Phys. Anal. Geom. 6 (2003), 1–8. (2003) Zbl1031.53074MR1962699DOI10.1023/A:1022448007111
  6. Blažić, N., Vukmirović, S., Four-dimensional Lie algebras with a para-hypercomplex structure, preprint, arxiv:math/0310180v1 [math.DG] (2003). MR2737373
  7. Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F., Special geometry of Euclidean supersymmetry II. Hypermultiplets and the c - map, Tech. report, Institute of Physics Publishing for SISSA, 2005. (2005) MR2158552
  8. Deng, S., Hou, Z., 10.1088/0305-4470/37/15/004, J. Phys. A, Math. Gen. 37 (2004), 4353–4360. (2004) Zbl1062.58007MR2063598DOI10.1088/0305-4470/37/15/004
  9. Deng, S., Hou, Z., 10.1088/0305-4470/37/15/004, J. Phys. A, Math. Gen. 37 (2004), 4353–4360. (2004) Zbl1049.83005MR2063598DOI10.1088/0305-4470/37/15/004
  10. Esrafilian, E., Moghaddam, H. R. Salimi, 10.1088/0305-4470/39/13/011, J. Phys. A, Math. Gen. 39 (2006), 3319–3324. (2006) MR2214213DOI10.1088/0305-4470/39/13/011
  11. Esrafilian, E., Moghaddam, H. R. Salimi, Induced invariant Finsler metrics on quotient groups, Balkan J. Geom. Appl. 11 (1) (2006), 73–79. (2006) MR2234541
  12. Gibbons, G. W., Papadopoulos, G., Stelle, K. S., HKT and OKT geometries on soliton black hole moduli spaces, Nuclear Phys. B 508 (1997), 623–658. (1997) Zbl0925.83060MR1600079
  13. Moghaddam, H. R. Salimi, Flag curvature of invariant ( α , β ) -metrics of type ( α + β ) 2 α , J. Phys. A, Math. Theor. 41 (24), Article ID 275206, 6pp. MR2455543
  14. Moghaddam, H. R. Salimi, 10.1007/s11040-008-9037-8, Math. Phys. Anal. Geom. 11 (2008), 1–9. (2008) MR2428098DOI10.1007/s11040-008-9037-8
  15. Moghaddam, H. R. Salimi, 10.1142/S0219887809003710, Internat. J. Geom. Methods in Modern Phys. 6 (4) (2009), 619–624. (2009) MR2541940DOI10.1142/S0219887809003710
  16. Moghaddam, H. R. Salimi, 10.1088/1751-8113/42/9/095212, J. Phys. A, Math. Theor. 095212 42 (2009), ID 095212, 7pp. (2009) MR2525540DOI10.1088/1751-8113/42/9/095212
  17. Moghaddam, H. R. Salimi, 10.1016/j.geomphys.2009.04.003, J. Geom. Phys. 59 (2009), 969–975. (2009) MR2536856DOI10.1016/j.geomphys.2009.04.003
  18. Poon, Y. S., Examples of hyper-Kähler connections with torsion, Vienna, preprint ESI, 770 (1999), 1-7. Zbl0989.53028MR1848672
  19. Randers, G., 10.1103/PhysRev.59.195, Phys. Rev. 59 (1941), 195–199. (1941) Zbl0027.18101MR0003371DOI10.1103/PhysRev.59.195
  20. Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001. (2001) Zbl0974.53002MR1845637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.