Numerical simulations for nodal domains and spectral minimal partitions

Virginie Bonnaillie-Noël; Bernard Helffer; Gregory Vial

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 1, page 221-246
  • ISSN: 1292-8119

Abstract

top
We recall here some theoretical results of Helffer et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004] about minimal partitions and propose numerical computations to check some of their published or unpublished conjectures and exhibit new ones.

How to cite

top

Bonnaillie-Noël, Virginie, Helffer, Bernard, and Vial, Gregory. "Numerical simulations for nodal domains and spectral minimal partitions." ESAIM: Control, Optimisation and Calculus of Variations 16.1 (2010): 221-246. <http://eudml.org/doc/250698>.

@article{Bonnaillie2010,
abstract = { We recall here some theoretical results of Helffer et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004] about minimal partitions and propose numerical computations to check some of their published or unpublished conjectures and exhibit new ones. },
author = {Bonnaillie-Noël, Virginie, Helffer, Bernard, Vial, Gregory},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Eigenmodes of Laplace operator; minimal partitions; nodal domains; finite element method; eigenmodes of Laplace operator},
language = {eng},
month = {1},
number = {1},
pages = {221-246},
publisher = {EDP Sciences},
title = {Numerical simulations for nodal domains and spectral minimal partitions},
url = {http://eudml.org/doc/250698},
volume = {16},
year = {2010},
}

TY - JOUR
AU - Bonnaillie-Noël, Virginie
AU - Helffer, Bernard
AU - Vial, Gregory
TI - Numerical simulations for nodal domains and spectral minimal partitions
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/1//
PB - EDP Sciences
VL - 16
IS - 1
SP - 221
EP - 246
AB - We recall here some theoretical results of Helffer et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004] about minimal partitions and propose numerical computations to check some of their published or unpublished conjectures and exhibit new ones.
LA - eng
KW - Eigenmodes of Laplace operator; minimal partitions; nodal domains; finite element method; eigenmodes of Laplace operator
UR - http://eudml.org/doc/250698
ER -

References

top
  1. G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv.69 (1994) 142–154.  
  2. P. Bérard, Inégalités isopérimétriques et applications : domaines nodaux des fonctions propres. Exposé XI, Séminaire Goulaouic-Meyer-Schwartz (1982).  
  3. L. Bers, Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math.8 (1955) 473–496.  
  4. V. Bonnaillie-Noël and G. Vial, Computations for nodal domains and spectral minimal partitions. (2007).  URIhttp://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions
  5. D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems. Adv. Math. Sci. Appl.8 (1998) 571–579.  
  6. D. Bucur, B. Bourdin and E. Oudet, Numerical study of an optimal partitioning problem related to eigenvalues. (In preparation).  
  7. L.A. Caffarelli and F.H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput.31 (2007) 5–18.  
  8. M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal.198 (2003) 160–196.  
  9. M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J.54 (2005) 779–815.  
  10. M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula. Calc. Var.22 (2005) 45–72.  
  11. O. Cybulski, V. Babin and R. Hołyst, Minimization of the Renyi entropy production in the space-partitioning process. Phys. Rev. E71 (2005) 46130.  
  12. B. Helffer, Domaines nodaux et partitions spectrales minimales (d'après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). Séminaire EDP de l'École Polytechnique (Déc. 2006).  
  13. B. Helffer, On nodal domains and minimal spectral partitions. Conference in Montreal (April 2008).  
  14. B. Helffer and T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains. Mosc. Math. J.7 (2007) 67–84.  
  15. B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions for the disk and the annulus. Provisory notes in February 2007.  
  16. B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:.  DOI10.1016/j.anihpc.2007.07.004
  17. D. Jakobson, M. Levitin, N. Nadirashvili and I. Polterovic, Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond. J. Comput. Appl. Math.194 (2006) 141–155.  
  18. N. Landais, Problèmes de régularité en optimisation de forme. Ph.D. Thesis, ENS Cachan Bretagne, France (2007).  
  19. M. Levitin, L. Parnovski and I. Polterovich, Isospectral domains with mixed boundary conditions. J. Phys. A39 (2006) 2073–2082.  
  20. D. Martin, The finite element library Mélina. (2006).  URIhttp://perso.univ-rennes1.fr/daniel.martin/melina
  21. A. Melas, On the nodal line of the second eigenfunction of the Laplacian on 2 . J. Differential Geom.35 (1992) 255–263.  
  22. A. Pleijel, Remarks on Courant's nodal theorem. Comm. Pure. Appl. Math9 (1956) 543–550.  
  23. G. Pólya, On the eigenvalues of vibrating membranes. Proc. London Mah. Soc.3 (1961) 419–433.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.