Numerical simulations for nodal domains and spectral minimal partitions
Virginie Bonnaillie-Noël; Bernard Helffer; Gregory Vial
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 1, page 221-246
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBonnaillie-Noël, Virginie, Helffer, Bernard, and Vial, Gregory. "Numerical simulations for nodal domains and spectral minimal partitions." ESAIM: Control, Optimisation and Calculus of Variations 16.1 (2010): 221-246. <http://eudml.org/doc/250698>.
@article{Bonnaillie2010,
abstract = {
We recall here some theoretical results of Helffer et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004] about minimal partitions and propose numerical computations to check some of their published or unpublished conjectures and exhibit new ones.
},
author = {Bonnaillie-Noël, Virginie, Helffer, Bernard, Vial, Gregory},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Eigenmodes of Laplace operator; minimal partitions; nodal domains; finite element method; eigenmodes of Laplace operator},
language = {eng},
month = {1},
number = {1},
pages = {221-246},
publisher = {EDP Sciences},
title = {Numerical simulations for nodal domains and spectral minimal partitions},
url = {http://eudml.org/doc/250698},
volume = {16},
year = {2010},
}
TY - JOUR
AU - Bonnaillie-Noël, Virginie
AU - Helffer, Bernard
AU - Vial, Gregory
TI - Numerical simulations for nodal domains and spectral minimal partitions
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/1//
PB - EDP Sciences
VL - 16
IS - 1
SP - 221
EP - 246
AB -
We recall here some theoretical results of Helffer et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004] about minimal partitions and propose numerical computations to check some of their published or unpublished conjectures and exhibit new ones.
LA - eng
KW - Eigenmodes of Laplace operator; minimal partitions; nodal domains; finite element method; eigenmodes of Laplace operator
UR - http://eudml.org/doc/250698
ER -
References
top- G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv.69 (1994) 142–154.
- P. Bérard, Inégalités isopérimétriques et applications : domaines nodaux des fonctions propres. Exposé XI, Séminaire Goulaouic-Meyer-Schwartz (1982).
- L. Bers, Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math.8 (1955) 473–496.
- V. Bonnaillie-Noël and G. Vial, Computations for nodal domains and spectral minimal partitions. (2007). URIhttp://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions
- D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems. Adv. Math. Sci. Appl.8 (1998) 571–579.
- D. Bucur, B. Bourdin and E. Oudet, Numerical study of an optimal partitioning problem related to eigenvalues. (In preparation).
- L.A. Caffarelli and F.H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput.31 (2007) 5–18.
- M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal.198 (2003) 160–196.
- M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J.54 (2005) 779–815.
- M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula. Calc. Var.22 (2005) 45–72.
- O. Cybulski, V. Babin and R. Hołyst, Minimization of the Renyi entropy production in the space-partitioning process. Phys. Rev. E71 (2005) 46130.
- B. Helffer, Domaines nodaux et partitions spectrales minimales (d'après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). Séminaire EDP de l'École Polytechnique (Déc. 2006).
- B. Helffer, On nodal domains and minimal spectral partitions. Conference in Montreal (April 2008).
- B. Helffer and T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains. Mosc. Math. J.7 (2007) 67–84.
- B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions for the disk and the annulus. Provisory notes in February 2007.
- B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:. DOI10.1016/j.anihpc.2007.07.004
- D. Jakobson, M. Levitin, N. Nadirashvili and I. Polterovic, Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond. J. Comput. Appl. Math.194 (2006) 141–155.
- N. Landais, Problèmes de régularité en optimisation de forme. Ph.D. Thesis, ENS Cachan Bretagne, France (2007).
- M. Levitin, L. Parnovski and I. Polterovich, Isospectral domains with mixed boundary conditions. J. Phys. A39 (2006) 2073–2082.
- D. Martin, The finite element library Mélina. (2006). URIhttp://perso.univ-rennes1.fr/daniel.martin/melina
- A. Melas, On the nodal line of the second eigenfunction of the Laplacian on . J. Differential Geom.35 (1992) 255–263.
- A. Pleijel, Remarks on Courant's nodal theorem. Comm. Pure. Appl. Math9 (1956) 543–550.
- G. Pólya, On the eigenvalues of vibrating membranes. Proc. London Mah. Soc.3 (1961) 419–433.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.