Hyperbolic relaxation models for granular flows
Thierry Gallouët; Philippe Helluy; Jean-Marc Hérard; Julien Nussbaum
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 2, page 371-400
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (ddt) in reactive granular materials. Int. J. Multiph. Flow16 (1986) 861–889.
- F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys.136 (1997) 272–288.
- F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C. R. Math. Acad. Sci. Paris334 (2002) 927–932.
- T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci.14 (2004) 663–700.
- D. Gidaspow, Multiphase flow and fluidization – Continuum and kinetic theory descriptions. Academic Press Inc., Boston, USA (1994).
- E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences118. Springer-Verlag, New York, USA (1996).
- A. Goldshtein, M. Shapiro and C. Gutfinger, Mechanics of colisional motion of granular materials. Part 3: Self similar shock wave propagation. J. Fluid Mech.316 (1996) 29–51.
- P.S. Gough, Modeling of two-phase flows in guns. AIAA66 (1979) 176–196.
- V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. Thesis, Université Aix-Marseille I, France (2007).
- A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev.25 (1983) 35–61.
- J.-M. Hérard and O. Hurisse, A simple method to compute standard two-fluid models. Int. J. Comput. Fluid Dyn.19 (2005) 475–482.
- A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son and D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids13 (2001) 3002–3024.
- K.K. Kuo, V. Yang and B.B. Moore, Intragranular stress, particle-wall friction and speed of sound in granular propellant beds. J. Ballistics4 (1980) 697–730.
- J. Nussbaum, Modélisation et simulation numérique d'un écoulement diphasique de la balistique intérieure. Ph.D. Thesis, Université de Strasbourg, France (2007).
- J. Nussbaum, P. Helluy, J.-M. Hérard and A. Carriére, Numerical simulations of gas-particle flows with combustion. Flow Turbulence Combust.76 (2006) 403–417.
- V.V. Rusanov, The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz.1 (1961) 267–279.
- R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.150 (1999) 425–467.
- E.F. Toro, Riemann-problem based techniques for computing reactive two-phase flows, in Proc. Third Intl. Conf. on Numerical Combustion, A. Dervieux and B. Larrouturou Eds., Lecture Notes in Physics351, Springer, Berlin, Germany (1989) 472–481.