Equivalence of control systems with linear systems on Lie groups and homogeneous spaces
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 4, page 956-973
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. Ayala and L. San Martin, Controllability properties of a class of control systems on Lie groups, in Nonlinear control in the year 2000, Vol. 1 (Paris), Lect. Notes Control Inform. Sci.258, Springer (2001) 83–92.
- V. Ayala and J. Tirao, Linear control systems on Lie groups and Controlability, in Proceedings of Symposia in Pure Mathematics, Vol. 64, AMS (1999) 47–64.
- N. Bourbaki, Groupes et algèbres de Lie, Chapitres 2 et 3. CCLS, France (1972).
- F. Cardetti and D. Mittenhuber, Local controllability for linear control systems on Lie groups. J. Dyn. Control Syst.11 (2005) 353–373.
- G. Hochschild, The Structure of Lie Groups. Holden-Day (1965).
- Ph. Jouan, On the existence of observable linear systems on Lie Groups. J. Dyn. Control Syst.15 (2009) 263–276.
- V. Jurdjevic, Geometric control theory. Cambridge University Press (1997).
- P. Malliavin, Géométrie différentielle intrinsèque. Hermann, Paris, France (1972).
- L. Markus, Controllability of multitrajectories on Lie groups, in Dynamical systems and turbulence, Warwick (1980), Lect. Notes Math.898, Springer, Berlin-New York (1981) 250–265.
- R.S. Palais, A global formulation of the Lie theory of transformation groups, Memoirs of the American Mathematical Society22. AMS, Providence, USA (1957).
- H.J. Sussmann, Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc.180 (1973) 171–188.