An iterative procedure to solve a coupled two-fluids turbulence model

Tomas Chacón Rebollo; Stéphane Del Pino; Driss Yakoubi

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 44, Issue: 4, page 693-713
  • ISSN: 0764-583X

Abstract

top
This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a solution of the initial problem. Finally, we give some numerical experiments to enlighten the theoretical work.

How to cite

top

Chacón Rebollo, Tomas, Del Pino, Stéphane, and Yakoubi, Driss. "An iterative procedure to solve a coupled two-fluids turbulence model." ESAIM: Mathematical Modelling and Numerical Analysis 44.4 (2010): 693-713. <http://eudml.org/doc/250807>.

@article{ChacónRebollo2010,
abstract = { This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a solution of the initial problem. Finally, we give some numerical experiments to enlighten the theoretical work. },
author = {Chacón Rebollo, Tomas, Del Pino, Stéphane, Yakoubi, Driss},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Ocean-atmosphere coupling; turbulent flows; convergence analysis; iterative method; spectral method; ocean-atmosphere coupling; convergence analysis},
language = {eng},
month = {6},
number = {4},
pages = {693-713},
publisher = {EDP Sciences},
title = {An iterative procedure to solve a coupled two-fluids turbulence model},
url = {http://eudml.org/doc/250807},
volume = {44},
year = {2010},
}

TY - JOUR
AU - Chacón Rebollo, Tomas
AU - Del Pino, Stéphane
AU - Yakoubi, Driss
TI - An iterative procedure to solve a coupled two-fluids turbulence model
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/6//
PB - EDP Sciences
VL - 44
IS - 4
SP - 693
EP - 713
AB - This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a solution of the initial problem. Finally, we give some numerical experiments to enlighten the theoretical work.
LA - eng
KW - Ocean-atmosphere coupling; turbulent flows; convergence analysis; iterative method; spectral method; ocean-atmosphere coupling; convergence analysis
UR - http://eudml.org/doc/250807
ER -

References

top
  1. J.J.F. Adams and R.A. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics Series, Elsevier/Academic Press (2003).  Zbl1098.46001
  2. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathematics & Applications10. Springer-Verlag (1992).  
  3. C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. I. Analysis of the system, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl.31, Amsterdam, North-Holland (2002) 69–102.  Zbl1034.35106
  4. C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal.40 (2003) 2368–2394.  Zbl1129.76327
  5. C. Bernardi, T. Chacón Rebollo, M. Gómez Mármol, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. III. Numerical approximation by finite elements. Numer. Math.98 (2004) 33–66.  Zbl1129.76326
  6. C. Bernardi, T. Chacón Rebollo, F. Hecht and R. Lewandowski, Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes Equations. Math. Mod. Meth. Appl. Sci.19 (2009) 1139–1183.  Zbl1169.76031
  7. H. Brezis, Analyse Fonctionnelle : Théorie et Applications. Collection “Mathématiques Appliquées pour la Maîtrise”, Masson (1983).  
  8. F. Brossier and R. Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system. ESAIM: M2AN36 (2002) 345–372.  Zbl1040.35057
  9. K. Bryan, A numerical method for the study of the circulation of the world ocean. J. Comput. Phys.4 (1969) 347–369.  Zbl0195.55504
  10. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Fundamentals in single domains. Springer, Berlin, Germany (2006).  Zbl1093.76002
  11. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin, Germany (2007).  Zbl1121.76001
  12. S. Del Pino and O. Pironneau, A fictitious domain based on general pde's solvers, in Proc. ECCOMAS 2001, Swansea, K. Morgan Ed., Wiley (2002).  
  13. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Germany (1986).  Zbl0585.65077
  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics24. Pitman (Advanced Publishing Program), Boston, USA (1985).  Zbl0695.35060
  15. E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes5. American Mathematical Society, USA (1999).  
  16. B.E. Launder and D.B. Spalding, Mathematical Modeling of Turbulence. Academic Press, London, UK (1972).  Zbl0288.76027
  17. J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007) 413–441.  Zbl1132.35069
  18. R. Lewandowski, Analyse Mathématique et Océanographie. Collection Recherches en Mathématiques Appliquées, Masson (1997).  
  19. R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal.28 (1997) 393–417.  Zbl0863.35077
  20. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications3, Travaux et Recherches Mathématiques20. Dunod, Paris, France (1970).  Zbl0197.06701
  21. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. RAM: Research in Applied Mathematics. Masson, Paris (1994).  
  22. J. Piquet, Turbulent Flows, Models and Physics. Springer, Germany (1999).  Zbl0928.76003
  23. D.C. Wilcox, Turbulence Modeling for CFD. Sixth edition, DCW Industries, inc. California, USA (2006).  
  24. D. Yakoubi, Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (2007).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.