An iterative procedure to solve a coupled two-fluids turbulence model
Tomas Chacón Rebollo; Stéphane Del Pino; Driss Yakoubi
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 4, page 693-713
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChacón Rebollo, Tomas, Del Pino, Stéphane, and Yakoubi, Driss. "An iterative procedure to solve a coupled two-fluids turbulence model." ESAIM: Mathematical Modelling and Numerical Analysis 44.4 (2010): 693-713. <http://eudml.org/doc/250807>.
@article{ChacónRebollo2010,
abstract = {
This paper introduces a scheme for the numerical approximation of a
model for two turbulent flows with coupling at an interface. We
consider the variational formulation of the coupled model, where the
turbulent kinetic energy equation is formulated by transposition. We
prove the convergence of the approximation to this formulation for
3D flows for large turbulent viscosities and smooth enough
flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a
solution of the initial problem. Finally, we give some
numerical experiments to enlighten the theoretical work.
},
author = {Chacón Rebollo, Tomas, Del Pino, Stéphane, Yakoubi, Driss},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Ocean-atmosphere coupling; turbulent flows; convergence
analysis; iterative method; spectral method; ocean-atmosphere coupling; convergence analysis},
language = {eng},
month = {6},
number = {4},
pages = {693-713},
publisher = {EDP Sciences},
title = {An iterative procedure to solve a coupled two-fluids turbulence model},
url = {http://eudml.org/doc/250807},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Chacón Rebollo, Tomas
AU - Del Pino, Stéphane
AU - Yakoubi, Driss
TI - An iterative procedure to solve a coupled two-fluids turbulence model
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/6//
PB - EDP Sciences
VL - 44
IS - 4
SP - 693
EP - 713
AB -
This paper introduces a scheme for the numerical approximation of a
model for two turbulent flows with coupling at an interface. We
consider the variational formulation of the coupled model, where the
turbulent kinetic energy equation is formulated by transposition. We
prove the convergence of the approximation to this formulation for
3D flows for large turbulent viscosities and smooth enough
flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a
solution of the initial problem. Finally, we give some
numerical experiments to enlighten the theoretical work.
LA - eng
KW - Ocean-atmosphere coupling; turbulent flows; convergence
analysis; iterative method; spectral method; ocean-atmosphere coupling; convergence analysis
UR - http://eudml.org/doc/250807
ER -
References
top- J.J.F. Adams and R.A. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics Series, Elsevier/Academic Press (2003).
- C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathematics & Applications10. Springer-Verlag (1992).
- C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. I. Analysis of the system, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl.31, Amsterdam, North-Holland (2002) 69–102.
- C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal.40 (2003) 2368–2394.
- C. Bernardi, T. Chacón Rebollo, M. Gómez Mármol, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. III. Numerical approximation by finite elements. Numer. Math.98 (2004) 33–66.
- C. Bernardi, T. Chacón Rebollo, F. Hecht and R. Lewandowski, Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes Equations. Math. Mod. Meth. Appl. Sci.19 (2009) 1139–1183.
- H. Brezis, Analyse Fonctionnelle : Théorie et Applications. Collection “Mathématiques Appliquées pour la Maîtrise”, Masson (1983).
- F. Brossier and R. Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system. ESAIM: M2AN36 (2002) 345–372.
- K. Bryan, A numerical method for the study of the circulation of the world ocean. J. Comput. Phys.4 (1969) 347–369.
- C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Fundamentals in single domains. Springer, Berlin, Germany (2006).
- C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin, Germany (2007).
- S. Del Pino and O. Pironneau, A fictitious domain based on general pde's solvers, in Proc. ECCOMAS 2001, Swansea, K. Morgan Ed., Wiley (2002).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Germany (1986).
- P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics24. Pitman (Advanced Publishing Program), Boston, USA (1985).
- E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes5. American Mathematical Society, USA (1999).
- B.E. Launder and D.B. Spalding, Mathematical Modeling of Turbulence. Academic Press, London, UK (1972).
- J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007) 413–441.
- R. Lewandowski, Analyse Mathématique et Océanographie. Collection Recherches en Mathématiques Appliquées, Masson (1997).
- R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal.28 (1997) 393–417.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications3, Travaux et Recherches Mathématiques20. Dunod, Paris, France (1970).
- B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. RAM: Research in Applied Mathematics. Masson, Paris (1994).
- J. Piquet, Turbulent Flows, Models and Physics. Springer, Germany (1999).
- D.C. Wilcox, Turbulence Modeling for CFD. Sixth edition, DCW Industries, inc. California, USA (2006).
- D. Yakoubi, Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (2007).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.