Automatic simplification of Darcy’s equations with pressure dependent permeability

Etienne Ahusborde; Mejdi Azaïez; Faker Ben Belgacem; Christine Bernardi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 6, page 1797-1820
  • ISSN: 0764-583X

Abstract

top
We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.

How to cite

top

Ahusborde, Etienne, et al. "Automatic simplification of Darcy’s equations with pressure dependent permeability." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1797-1820. <http://eudml.org/doc/273225>.

@article{Ahusborde2013,
abstract = {We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.},
author = {Ahusborde, Etienne, Azaïez, Mejdi, Ben Belgacem, Faker, Bernardi, Christine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Darcy’s equations; spectral elements; a posteriori analysis; Darcy's equations},
language = {eng},
number = {6},
pages = {1797-1820},
publisher = {EDP-Sciences},
title = {Automatic simplification of Darcy’s equations with pressure dependent permeability},
url = {http://eudml.org/doc/273225},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Ahusborde, Etienne
AU - Azaïez, Mejdi
AU - Ben Belgacem, Faker
AU - Bernardi, Christine
TI - Automatic simplification of Darcy’s equations with pressure dependent permeability
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1797
EP - 1820
AB - We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.
LA - eng
KW - Darcy’s equations; spectral elements; a posteriori analysis; Darcy's equations
UR - http://eudml.org/doc/273225
ER -

References

top
  1. [1] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math.96 (2003) 17–42. Zbl1050.76035MR2018789
  2. [2] M. Azaïez, F. Ben Belgacem and C. Bernardi, The mortar spectral element method in domains of operators, Part I: The divergence operator and Darcy’s equations. IMA J. Numer. Anal. 26 (2006) 131–154. Zbl1094.65116MR2193973
  3. [3] M. Azaïez, F. Ben Belgacem, C. Bernardi and N. Chorfi, Spectral discretization of Darcy’s equations with pressure dependent porosity. Appl. Math. Comput.217 (2010) 1838–1856. Zbl05817268MR2727929
  4. [4] M. Azaïez, F. Ben Belgacem, M. Grundmann and H. Khallouf, Staggered grids hybrid-dual spectral element method for second-order elliptic problems, Application to high-order time splitting methods for Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 166 (1998) 183–199. Zbl0969.76066MR1659191
  5. [5] C. Bernardi, Indicateurs d’erreur en h − N version des éléments spectraux. Modél. Math. et Anal. Numér. 30 (1996) 1–38. Zbl0843.65077MR1378610
  6. [6] C. Bernardi, A. Blouza, N. Chorfi and N. Kharrat, A penalty algorithm for the spectral element discretization of the Stokes problem. Math. Model. Numer. Anal.45 (2011) 201–216. Zbl1267.76023MR2804636
  7. [7] C. Bernardi, T. Chacón Rebollo, F. Hecht and R. Lewandowski, Automatic insertion of a turbulence model in the finite element discretization of the Navier–Stokes equations. Math. Models Methods Appl. Sci.19 (2009) 1139–1183. Zbl1169.76031MR2553180
  8. [8] C. Bernardi, F. Coquel and P.-A. Raviart, Automatic coupling and finite element discretization of the Navier–Stokes and heat equations, Internal Report R10001, Labotatoire Jacques-Louis Lions, Paris (2010). 
  9. [9] C. Bernardi, M. Dauge and Y. Maday, Polynomials in Sobolev Spaces and Application to the Mortar Spectral Element Method, in preparation. 
  10. [10] C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, edited by P.G. Ciarlet and J.-L. Lions. North-Holland (1997) 209–485. Zbl0689.65001MR1470226
  11. [11] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications vol. 45. Springer-Verlag (2004). Zbl1063.65119MR2068204
  12. [12] M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul.1 (2003) 221–238. Zbl1050.65100MR1990196
  13. [13] H. Brezis and P. Mironescu, Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ.1 (2001), 387–404. Zbl1023.46031MR1877265
  14. [14] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. Zbl0488.65021MR595803
  15. [15] T. Chacón Rebollo, S. Del Pino and D. Yakoubi, An iterative procedure to solve a coupled two-fluids turbulence model. Math. Model. Numer. Anal.44 (2010) 693–713. Zbl1234.76037MR2683579
  16. [16] A.L. Chaillou and M. Suri, Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Engrg.196 (2006) 210–224. Zbl1120.74809MR2270132
  17. [17] M. Daadaa, Discrétisation spectrale et par éléments spectraux des équations de Darcy, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2009). 
  18. [18] M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integr. Equ. Oper. Th.15 (1992) 227–261. Zbl0767.46026MR1147281
  19. [19] L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Engrg.200 (2011) 2782–2795. Zbl1230.65118MR2811915
  20. [20] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer–Verlag (1986). Zbl0585.65077MR851383
  21. [21] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I. Dunod, Paris (1968). Zbl0197.06701
  22. [22] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa17 (1963) 189–206. Zbl0127.31904MR159110
  23. [23] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math.69 (1994) 213–231. Zbl0822.65034MR1310318
  24. [24] K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solid. Math. Models Methods Appl. Sci.17 (2007) 215–252. Zbl1123.76066MR2292356
  25. [25] G. Talenti, Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. Serie IV110 (1976) 353–372. Zbl0353.46018MR463908
  26. [26] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley ans Teubner (1996). Zbl0853.65108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.