Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

Ayman Kachmar

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 3, page 545-580
  • ISSN: 1292-8119

Abstract

top
This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.

How to cite

top

Kachmar, Ayman. "Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint." ESAIM: Control, Optimisation and Calculus of Variations 16.3 (2010): 545-580. <http://eudml.org/doc/250815>.

@article{Kachmar2010,
abstract = { This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained. },
author = {Kachmar, Ayman},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Generalized Ginzburg-Landau energy functional; proximity effects; global minimizers; unique positive solution; vortices; generalized Ginzburg-Landau energy functional; unique positive solution},
language = {eng},
month = {7},
number = {3},
pages = {545-580},
publisher = {EDP Sciences},
title = {Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint},
url = {http://eudml.org/doc/250815},
volume = {16},
year = {2010},
}

TY - JOUR
AU - Kachmar, Ayman
TI - Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/7//
PB - EDP Sciences
VL - 16
IS - 3
SP - 545
EP - 580
AB - This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.
LA - eng
KW - Generalized Ginzburg-Landau energy functional; proximity effects; global minimizers; unique positive solution; vortices; generalized Ginzburg-Landau energy functional; unique positive solution
UR - http://eudml.org/doc/250815
ER -

References

top
  1. A. Aftalion, E. Sandier and S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity. J. Math. Pures Appl.80 (2001) 339–372.  Zbl1027.35123
  2. A. Aftalion, S. Alama and L. Bronsard, Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. Arch. Rational Mech. Anal.178 (2005) 247–286.  Zbl1075.76063
  3. S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions. J. Math. Phys.46 (2005) 095102.  Zbl1111.58013
  4. S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains. Comm. Pure Appl. Math.LIX (2006) 0036–0070.  Zbl1084.82021
  5. N. André, P. Baumann and D. Phillips, Vortex pinning with bounded fields for the Ginzburg-Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 705–729.  Zbl1040.35108
  6. H. Aydi and A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Comm. Pure Appl. Anal.8 (2009) 977–998.  Zbl1180.35495
  7. F. Béthuel and T. Rivière, Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 243–303.  Zbl0842.35119
  8. F. Béthuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Birkhäuser, Boston-Basel-Berlin (1994).  
  9. S.J. Chapman and G. Richardson, Vortex pinning by inhomogenities in type II superconductors. Phys. D108 (1997) 397–407.  Zbl1039.82510
  10. S.J. Chapman, Q. Du and M.D. Gunzburger, A Ginzburg Landau type model of superconducting/normal junctions including Josephson junctions. European J. Appl. Math.6 (1996) 97–114.  Zbl0843.35120
  11. P.G. de Gennes, Superconductivity of metals and alloys. Benjamin (1966).  Zbl0138.22801
  12. Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Reviews34 (1992) 529–560.  Zbl0787.65091
  13. H.J. Fink and W.C.H. Joiner, Surface nucleation and boundary conditions in superconductors. Phys. Rev. Lett.23 (1969) 120.  
  14. T. Giorgi, Superconductors surrounded by normal materials. Proc. Roy. Soc. Edinburgh Sec. A135 (2005) 331–356.  Zbl1068.35154
  15. T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. SIAM J. Math. Anal.30 (1999) 341–359.  Zbl0920.35058
  16. J.O. Indekeu, F. Clarysse and E. Montevecchi, Wetting phase transition and superconductivity: The role of suface enhancement of the order parameter in the GL theory. Procceding of the NATO ASI, Albena, Bulgaria (1998).  
  17. A. Kachmar, On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary condition. J. Math. Phys.47 (2006) 072106.  Zbl1112.81035
  18. A. Kachmar, On the perfect superconducting state for a generalized Ginzburg-Landau equation. Asymptot. Anal.54 (2007) 125–164.  Zbl1173.35707
  19. A. Kachmar, On the stability of normal states for a generalized Ginzburg-Landau model. Asymptot. Anal.55 (2007) 145–201.  Zbl1148.35054
  20. A. Kachmar, Weyl asymptotics for magnetic Schrödinger opertors and de Gennes' boundary condition. Rev. Math. Phys.20 (2008) 901–932.  Zbl1167.82024
  21. A. Kachmar, Magnetic Ginzburg-Landau functional with discontinuous constraint. C. R. Math. Acad. Sci. Paris346 (2008) 297–300.  Zbl1138.35087
  22. A. Kachmar, Limiting jump conditions for Josephson junctions in Ginzburg-Landau theory. Differential Integral Equations21 (2008) 95–130.  Zbl1224.35124
  23. L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math.77 (1999) 1–26.  Zbl0930.35073
  24. K. Lu and X.-B. Pan, Ginzburg-Landau equation with de Gennes boundary condition. J. Diff. Equ.129 (1996) 136-165.  Zbl0873.35088
  25. N.G. Meyers, An Lp estimate for the gradient of solutions of second order elliptic equations. Ann. Sc. Norm. Sup. Pisa17 (1963) 189–206.  Zbl0127.31904
  26. E. Montevecchi and J.O. Indekeu, Effects of confinement and surface enhancement on superconductivity. Phys. Rev. B62 (2000) 661–666.  
  27. J. Rubinstein, Six lectures in superconductivity, in Boundaries, Interfaces and Transitions (Banff, AB, 1995), CRM Proc., Lecture Notes13, Amer. Math. Soc., Providence, RI (1998) 163–184.  Zbl0921.35161
  28. E. Sandier and S. Serfaty, Ginzburg-Landau minimizers near the first critical field have bounded vorticity. Calc. Var. Partial Differ. Equ.17 (2003) 17–28.  Zbl1037.49001
  29. E. Sandier and S. Serfaty, Vortices for the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications70. Birkhäuser Boston (2007).  Zbl1112.35002
  30. S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I. Commun. Contemp. Math.1 (1999) 213–254.  Zbl0944.49007
  31. S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field. II. Commun. Contemp. Math.1 (1999) 295–333.  Zbl0964.49005
  32. I.M. Sigal and F. Ting, Pinning of magnetic vortices by an external potential. St. Petresburg Math. J.16 (2005) 211–236.  Zbl1067.58015
  33. G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures No. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montréal, Québec (1966) 326 p.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.