Vortex pinning with bounded fields for the Ginzburg–Landau equation
Nelly Andre; Patricia Bauman; Dan Phillips
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 4, page 705-729
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAndre, Nelly, Bauman, Patricia, and Phillips, Dan. "Vortex pinning with bounded fields for the Ginzburg–Landau equation." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 705-729. <http://eudml.org/doc/78594>.
@article{Andre2003,
author = {Andre, Nelly, Bauman, Patricia, Phillips, Dan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Ginzburg-Landau free energy; non-uniform superconductivity; minimizers; vortex patterns},
language = {eng},
number = {4},
pages = {705-729},
publisher = {Elsevier},
title = {Vortex pinning with bounded fields for the Ginzburg–Landau equation},
url = {http://eudml.org/doc/78594},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Andre, Nelly
AU - Bauman, Patricia
AU - Phillips, Dan
TI - Vortex pinning with bounded fields for the Ginzburg–Landau equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 705
EP - 729
LA - eng
KW - Ginzburg-Landau free energy; non-uniform superconductivity; minimizers; vortex patterns
UR - http://eudml.org/doc/78594
ER -
References
top- [1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg–Landau model of superconductivity, Preprint. Zbl1027.35123MR1826348
- [2] Bethuel F., The approximation problem for Sobolev maps between two manifolds, Acta Math.167 (3–4) (1991) 153-206. Zbl0756.46017MR1120602
- [3] Chapman S.J., Du Q., Gunzburger M.D., A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math.6 (1995) 97-114. Zbl0843.35120MR1331493
- [4] Chapman S.J., Richardson G., Vortex pinning by inhomogeneities in type II superconductors, Phys. D108 (4) (1997) 397-407. Zbl1039.82510MR1474691
- [5] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal.30 (2) (1999) 341-359. Zbl0920.35058MR1664763
- [6] Jaffe A., Taubes C., Vortices Monopoles, Birkhäuser, 1980. Zbl0457.53034MR614447
- [7] Jerrard R., Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal.30 (4) (1999) 721-746. Zbl0928.35045MR1684723
- [8] Jimbo S., Morita Y., Ginzburg–Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal.27 (5) (1996) 1360-1385. Zbl0865.35016MR1402445
- [9] Jimbo S., Zhai J., Ginzburg–Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan50 (3) (1998) 663-684. Zbl0912.58011MR1626354
- [10] Likharev K., Superconducting weak links, Rev. Mod. Phys.51 (1979) 101-159.
- [11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear. Zbl0947.49004MR1743433
- [12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear. Zbl0964.49006MR1794239
- [13] Rubinstein J., Sternberg P., Homotopy classification of minimizers of the Ginzburg–Landau energy and the existence of permanent currents, Comm. Math. Phys.179 (1) (1996) 257-263. Zbl0860.35131MR1395224
- [14] Schoen R., Uhlenbeck K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom.18 (2) (1983) 253-268. Zbl0547.58020MR710054
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.