Analysis of a semi-Lagrangian method for the spherically symmetric Vlasov-Einstein system

Philippe Bechouche; Nicolas Besse

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 44, Issue: 3, page 573-595
  • ISSN: 0764-583X

Abstract

top
We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates are supplied. More precisely the metric coefficients converge in L∞ and the statistical distribution function of the matter and its moments converge in L2 with a rate of 𝒪 (Δt2 + hm/Δt), when the exact solution belongs to Hm.

How to cite

top

Bechouche, Philippe, and Besse, Nicolas. "Analysis of a semi-Lagrangian method for the spherically symmetric Vlasov-Einstein system." ESAIM: Mathematical Modelling and Numerical Analysis 44.3 (2010): 573-595. <http://eudml.org/doc/250818>.

@article{Bechouche2010,
abstract = { We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates are supplied. More precisely the metric coefficients converge in L∞ and the statistical distribution function of the matter and its moments converge in L2 with a rate of $\mathcal\{O\}$ (Δt2 + hm/Δt), when the exact solution belongs to Hm. },
author = {Bechouche, Philippe, Besse, Nicolas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Vlasov-Einstein system; semi-Lagrangian methods; convergence analysis; general relativity},
language = {eng},
month = {4},
number = {3},
pages = {573-595},
publisher = {EDP Sciences},
title = {Analysis of a semi-Lagrangian method for the spherically symmetric Vlasov-Einstein system},
url = {http://eudml.org/doc/250818},
volume = {44},
year = {2010},
}

TY - JOUR
AU - Bechouche, Philippe
AU - Besse, Nicolas
TI - Analysis of a semi-Lagrangian method for the spherically symmetric Vlasov-Einstein system
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/4//
PB - EDP Sciences
VL - 44
IS - 3
SP - 573
EP - 595
AB - We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates are supplied. More precisely the metric coefficients converge in L∞ and the statistical distribution function of the matter and its moments converge in L2 with a rate of $\mathcal{O}$ (Δt2 + hm/Δt), when the exact solution belongs to Hm.
LA - eng
KW - Vlasov-Einstein system; semi-Lagrangian methods; convergence analysis; general relativity
UR - http://eudml.org/doc/250818
ER -

References

top
  1. R.P. Agarwal, Difference equations and inequalities, Monographs and Textbooks in pure and applied mathematics. Marcel Dekker, New York, USA (1992).  
  2. H. Andréasson and G. Rein, A numerical investigation of stability states and critical phenomena for the spherically symmetric Einstein-Vlasov system. Class. Quant. Grav.23 (2006) 3659–3677.  Zbl1096.83035
  3. F. Bastin and P. Laubin, Regular compactly supported wavelets in Sobolev spaces. Duke Math. J.87 (1996) 481–508.  Zbl0883.42026
  4. M.L. Bégué, A. Ghizzo, P. Bertrand, E. Sonnendrücker and O. Coulaud, Two dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime. J. Plasma Phys.62 (1999) 367–388.  
  5. N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal.42 (2004) 350–382.  Zbl1071.82037
  6. N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the Vlasov-Poisson system. SIAM J. Numer. Anal.46 (2008) 639–670.  Zbl1168.82025
  7. N. Besse and P. Bertrand, Gyro-water-bag approch in nonlinear gyrokinetic turbulence. J. Comput. Phys.228 (2009) 3973–3995.  Zbl1273.82071
  8. N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comp.77 (2008) 93–123.  Zbl1131.65080
  9. N. Besse and E. Sonnendrücker, Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys.191 (2003) 341–376.  Zbl1030.82011
  10. N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker and P. Bertrand, A Wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys.227 (2008) 7889–7916.  Zbl1194.83013
  11. C.K. Birdsall and A.B. Langdon, Plasmas physics via computer simulation. McGraw-Hill, USA (1985).  
  12. C.Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space. J. Comput Phys.22 (1976) 330–351.  
  13. M.W. Choptuik, Universality and scaling in gravitational collapse of a scalar field. Phys. Rev. Lett.70 (1993) 9–12.  
  14. M.W. Choptuik and I. Obarrieta, Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry. Phys. Rev. D65 (2001) 024007.  
  15. M.W. Choptuik, T. Chmaj and P. Bizoń, Critical behaviour in gravitational collapse of a Yang-Mills field. Phys. Rev. Lett.77 (1996) 424–427.  
  16. Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro-différentiel d'Einstein–Liouville. Ann. Inst. Fourier21 (1971) 181–201.  Zbl0208.14303
  17. A. Cohen, Numerical analysis of wavelet methods, Studies in mathematics and its applications32. Elsevier, North-Holland (2003).  
  18. J.M. Dawson, Particle simulation of plasmas. Rev. Modern Phys.55 (1983) 403–447.  
  19. K. Ganguly and H. Victory, On the convergence for particle methods for multidimensional Vlasov-Poisson systems. SIAM J. Numer. Anal.26 (1989) 249-288.  Zbl0669.76146
  20. R.T. Glassey and J. Schaeffer, Convergence of a particle method for the relativistic Vlasov-Maxwell system. SIAM J. Numer. Anal.28 (1991) 1–25.  Zbl0725.65124
  21. G. Rein and A.D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein with small initial data. Commun. Math. Phys.150 (1992) 561–583. [Erratum. Comm. Math. Phys.176 (1996) 475–478.]  Zbl0774.53056
  22. G. Rein and T. Rodewis, Convergence of a Particle-In-Cell scheme for the spherically symmetric Vlasov-Einstein system. Ind. Un. Math. J.52 (2003) 821–861.  Zbl1080.83003
  23. G. Rein, A.D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherical symmetric Vlasov-Einstein system. Commun. Math. Phys.168 (1995) 467–478.  Zbl0830.35141
  24. G. Rein, A.D. Rendall and J. Schaeffer, Critical collapse of collisionless matter-a numerical investigation. Phys. Rev. D58 (1998) 044007.  
  25. T. Rodewis, Numerical treatment of the symmetric Vlasov-Poisson and Vlasov-Einstein system by particle methods. Ph.D. Thesis, Mathematisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany (1999).  Zbl0972.35168
  26. J. Schaeffer, Discrete approximation of the Poisson-Vlasov system. Quart. Appl. Math.45 (1987) 59–73.  Zbl0646.65097
  27. S.L. Shapiro and S.A. Teukolsky, Relativistic stellar dynamics on computer I, Motivation and numerical methods. Astrophys. J.298 (1985) 34–57.  
  28. S.L. Shapiro and S.A. Teukolsky, Relativistic stellar dynamics on computer II, Physical applications. Astrophys. J.298 (1985) 58–79.  
  29. S.L. Shapiro and S.A. Teukolsky, Relativistic stellar dynamics on computer IV, Collapse of a stellar cluster to a black hole. Astrophys. J.307 (1986) 575–592.  
  30. A. Staniforth and J. Cote, Semi-Lagrangian integration schemes for atmospheric models-a review. Mon. Weather Rev.119 (1991) 2206–2223.  
  31. H.D. Victory and E.J. Allen, The convergence theory of particle-in-cell methods for multi-dimensional Vlasov-Poisson systems. SIAM J. Numer. Anal.28 (1991) 1207–1241.  Zbl0741.65072
  32. H.D. Victory, G. Tucker and K. Ganguly, The convergence analysis of fully discretized particle methods for solving Vlasov-Poisson systems. SIAM J. Numer. Anal.28 (1991) 955–989.  Zbl0777.65058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.