A better numerical solution stability by using the function developments in Cazacu's proper series.
We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates...
Using Burgers’ equation with mixed Neumann–Dirichlet boundary conditions, we highlight a problem that can arise in the numerical approximation of nonlinear dynamical systems on computers with a finite precision floating point number system. We describe the dynamical system generated by Burgers’ equation with mixed boundary conditions, summarize some of its properties and analyze the equilibrium states for finite dimensional dynamical systems that are generated by numerical approximations of this...
Seasonal forcing is identified as a key pattern generating mechanism in an epidemic model of rabies dispersal. We reduce an established individual-based high-detail model down to a deterministic conceptual model. The characteristic wave pattern characterized by high densities of infected individuals is maintained throughout the reduction process. In our model it is evident that seasonal forcing is the dominant factor that drives pattern formation. In particular we show that seasonal forcing can...