Displaying similar documents to “Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity”

Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method

Antonín Novotný (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part u of the velocity field v and we give a new proof of the compactness...

Existence of strong solutions for nonisothermal Korteweg system

Boris Haspot (2009)

Annales mathématiques Blaise Pascal

Similarity:

This work is devoted to the study of the initial boundary value problem for a general non isothermal model of capillary fluids derived by J. E Dunn and J. Serrin (1985) in [9, 16], which can be used as a phase transition model. We distinguish two cases, when the physical coefficients depend only on the density, and the general case. In the first case we can work in critical...

Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

Masafumi Yoshino, Todor Gramchev (2008)

Annales de l’institut Fourier

Similarity:

We study the simultaneous linearizability of d –actions (and the corresponding d -dimensional Lie algebras) defined by commuting singular vector fields in n fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of d vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators...