Isomorphisms of algebraic number fields

Mark van Hoeij[1]; Vivek Pal[2]

  • [1] Florida State University 211 Love Building Tallahassee, Fl 32306-3027, USA
  • [2] Columbia University Room 509, MC 4406 2990 Broadway New York, NY 10027, USA

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 293-305
  • ISSN: 1246-7405

Abstract

top
Let ( α ) and ( β ) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, ( β ) ( α ) . The algorithm is particularly efficient if there is only one isomorphism.

How to cite

top

van Hoeij, Mark, and Pal, Vivek. "Isomorphisms of algebraic number fields." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 293-305. <http://eudml.org/doc/251033>.

@article{vanHoeij2012,
abstract = {Let $\mathbb\{Q\}(\alpha )$ and $\mathbb\{Q\}(\beta )$ be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, $\mathbb\{Q\}(\beta ) \rightarrow \mathbb\{Q\}(\alpha )$. The algorithm is particularly efficient if there is only one isomorphism.},
affiliation = {Florida State University 211 Love Building Tallahassee, Fl 32306-3027, USA; Columbia University Room 509, MC 4406 2990 Broadway New York, NY 10027, USA},
author = {van Hoeij, Mark, Pal, Vivek},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {number fields; isomorphism; computational number theory},
language = {eng},
month = {6},
number = {2},
pages = {293-305},
publisher = {Société Arithmétique de Bordeaux},
title = {Isomorphisms of algebraic number fields},
url = {http://eudml.org/doc/251033},
volume = {24},
year = {2012},
}

TY - JOUR
AU - van Hoeij, Mark
AU - Pal, Vivek
TI - Isomorphisms of algebraic number fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 293
EP - 305
AB - Let $\mathbb{Q}(\alpha )$ and $\mathbb{Q}(\beta )$ be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, $\mathbb{Q}(\beta ) \rightarrow \mathbb{Q}(\alpha )$. The algorithm is particularly efficient if there is only one isomorphism.
LA - eng
KW - number fields; isomorphism; computational number theory
UR - http://eudml.org/doc/251033
ER -

References

top
  1. Granville, A., “Bounding the coefficients of a divisor of a given polynomial". Monatsh. Math. 109 (1990), 271–277. Zbl0713.12001MR1064221
  2. Conrad, Kieth., “The different ideal". Expository papers/Lecture notes. Available at: http://www.math.uconn.edu/ kconrad/blurbs/gradnumthy/different.pdf 
  3. Monagan, M. B., “A Heuristic Irreducibility Test for Univariate Polynomials". J. of Symbolic Comp., 13, No. 1, Academic Press (1992) 47–57. Zbl0748.12010MR1153634
  4. Dahan, X. and Schost, E ´ ., “Sharp estimates for triangular sets". In Proceedings of the 2004 international Symposium on Symbolic and Algebraic Computation (Santander, Spain, July 04 – 07, 2004). ISSAC ’04. ACM, New York, NY, 103–110. Zbl1134.13308MR2126931
  5. Database by Jürgen Klüners and Gunter Malle, located at: http://www.math.uni-duesseldorf.de/ klueners/minimum/minimum.html 
  6. Belabas, Karim., “A relative van Hoeij algorithm over number fields". J. Symbolic Computation, Vol. 37 (2004), no. 5, pp. 641–668. Zbl1137.11360MR2094619
  7. Website with implementations and Degree 81 examples: http://www.math.fsu.edu/ vpal/Iso/ 
  8. van Hoeij, Mark., “Factoring Polynomials and the Knapsack Problem." J. Number Th. 95 (2002), 167–189. Zbl1081.11080MR1924096
  9. Lenstra, A. K.; Lenstra, H. W., Jr.; Lovász, L., “Factoring polynomials with rational coefficients". Mathematische Annalen 261 (4) (1982), 515–534. Zbl0488.12001MR682664
  10. M. van Hoeij and A. Novocin, “ Gradual sub-lattice reduction and a new complexity for factoring polynomials", accepted for proceedings of LATIN 2010. Zbl1191.11035MR2673291
  11. Cohen, Henri, A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138, Springer-Verlag, 1993. Zbl0786.11071MR1228206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.