Isomorphisms of algebraic number fields
Mark van Hoeij[1]; Vivek Pal[2]
- [1] Florida State University 211 Love Building Tallahassee, Fl 32306-3027, USA
- [2] Columbia University Room 509, MC 4406 2990 Broadway New York, NY 10027, USA
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 293-305
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topvan Hoeij, Mark, and Pal, Vivek. "Isomorphisms of algebraic number fields." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 293-305. <http://eudml.org/doc/251033>.
@article{vanHoeij2012,
abstract = {Let $\mathbb\{Q\}(\alpha )$ and $\mathbb\{Q\}(\beta )$ be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, $\mathbb\{Q\}(\beta ) \rightarrow \mathbb\{Q\}(\alpha )$. The algorithm is particularly efficient if there is only one isomorphism.},
affiliation = {Florida State University 211 Love Building Tallahassee, Fl 32306-3027, USA; Columbia University Room 509, MC 4406 2990 Broadway New York, NY 10027, USA},
author = {van Hoeij, Mark, Pal, Vivek},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {number fields; isomorphism; computational number theory},
language = {eng},
month = {6},
number = {2},
pages = {293-305},
publisher = {Société Arithmétique de Bordeaux},
title = {Isomorphisms of algebraic number fields},
url = {http://eudml.org/doc/251033},
volume = {24},
year = {2012},
}
TY - JOUR
AU - van Hoeij, Mark
AU - Pal, Vivek
TI - Isomorphisms of algebraic number fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 293
EP - 305
AB - Let $\mathbb{Q}(\alpha )$ and $\mathbb{Q}(\beta )$ be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, $\mathbb{Q}(\beta ) \rightarrow \mathbb{Q}(\alpha )$. The algorithm is particularly efficient if there is only one isomorphism.
LA - eng
KW - number fields; isomorphism; computational number theory
UR - http://eudml.org/doc/251033
ER -
References
top- Granville, A., “Bounding the coefficients of a divisor of a given polynomial". Monatsh. Math. 109 (1990), 271–277. Zbl0713.12001MR1064221
- Conrad, Kieth., “The different ideal". Expository papers/Lecture notes. Available at: http://www.math.uconn.edu/kconrad/blurbs/gradnumthy/different.pdf
- Monagan, M. B., “A Heuristic Irreducibility Test for Univariate Polynomials". J. of Symbolic Comp., 13, No. 1, Academic Press (1992) 47–57. Zbl0748.12010MR1153634
- Dahan, X. and Schost, ., “Sharp estimates for triangular sets". In Proceedings of the 2004 international Symposium on Symbolic and Algebraic Computation (Santander, Spain, July 04 – 07, 2004). ISSAC ’04. ACM, New York, NY, 103–110. Zbl1134.13308MR2126931
- Database by Jürgen Klüners and Gunter Malle, located at: http://www.math.uni-duesseldorf.de/klueners/minimum/minimum.html
- Belabas, Karim., “A relative van Hoeij algorithm over number fields". J. Symbolic Computation, Vol. 37 (2004), no. 5, pp. 641–668. Zbl1137.11360MR2094619
- Website with implementations and Degree 81 examples: http://www.math.fsu.edu/vpal/Iso/
- van Hoeij, Mark., “Factoring Polynomials and the Knapsack Problem." J. Number Th. 95 (2002), 167–189. Zbl1081.11080MR1924096
- Lenstra, A. K.; Lenstra, H. W., Jr.; Lovász, L., “Factoring polynomials with rational coefficients". Mathematische Annalen 261 (4) (1982), 515–534. Zbl0488.12001MR682664
- M. van Hoeij and A. Novocin, “ Gradual sub-lattice reduction and a new complexity for factoring polynomials", accepted for proceedings of LATIN 2010. Zbl1191.11035MR2673291
- Cohen, Henri, A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138, Springer-Verlag, 1993. Zbl0786.11071MR1228206
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.