Albanese varieties with modulus and Hodge theory

Kazuya Kato[1]; Henrik Russell[2]

  • [1] University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
  • [2] Universität Duisburg-Essen FB6 Mathematik, Campus Essen 45117 Essen (Germany)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 783-806
  • ISSN: 0373-0956

Abstract

top
Let X be a proper smooth variety over a field k of characteristic 0 and Y an effective divisor on X with multiplicity. We introduce a generalized Albanese variety Alb ( X , Y ) of X of modulus Y , as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For k = we give a Hodge theoretic description.

How to cite

top

Kato, Kazuya, and Russell, Henrik. "Albanese varieties with modulus and Hodge theory." Annales de l’institut Fourier 62.2 (2012): 783-806. <http://eudml.org/doc/251041>.

@article{Kato2012,
abstract = {Let $X$ be a proper smooth variety over a field $k$ of characteristic $0$ and $Y$ an effective divisor on $X$ with multiplicity. We introduce a generalized Albanese variety Alb$(X,Y)$ of $X$ of modulus $Y$, as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For $k = \mathbb\{C\}$ we give a Hodge theoretic description.},
affiliation = {University of Chicago Department of Mathematics Chicago, IL 60637 (USA); Universität Duisburg-Essen FB6 Mathematik, Campus Essen 45117 Essen (Germany)},
author = {Kato, Kazuya, Russell, Henrik},
journal = {Annales de l’institut Fourier},
keywords = {generalized Albanese variety; modulus of a rational map; generalized mixed Hodge structure},
language = {eng},
number = {2},
pages = {783-806},
publisher = {Association des Annales de l’institut Fourier},
title = {Albanese varieties with modulus and Hodge theory},
url = {http://eudml.org/doc/251041},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Kato, Kazuya
AU - Russell, Henrik
TI - Albanese varieties with modulus and Hodge theory
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 783
EP - 806
AB - Let $X$ be a proper smooth variety over a field $k$ of characteristic $0$ and $Y$ an effective divisor on $X$ with multiplicity. We introduce a generalized Albanese variety Alb$(X,Y)$ of $X$ of modulus $Y$, as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For $k = \mathbb{C}$ we give a Hodge theoretic description.
LA - eng
KW - generalized Albanese variety; modulus of a rational map; generalized mixed Hodge structure
UR - http://eudml.org/doc/251041
ER -

References

top
  1. Luca Barbieri-Viale, Formal Hodge theory, Math. Res. Lett. 14 (2007), 385-394 Zbl1131.14014MR2318642
  2. Luca Barbieri-Viale, Alessandra Bertapelle, Sharp de Rham realization, Adv. Math. 222 (2009), 1308-1338 Zbl1216.14006MR2554937
  3. Luca Barbieri-Viale, Vasudevan Srinivas, Albanese and Picard 1-motives, Mém. Soc. Math. Fr. (N.S.) (2001) Zbl0930.14012MR1891270
  4. Spencer Bloch, V. Srinivas, Enriched Hodge structures, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) 16 (2002), 171-184, Tata Inst. Fund. Res., Bombay Zbl1071.14012MR1940668
  5. Pierre Deligne, Théorie de Hodge. II et III, Inst. Hautes Études Sci. Publ. Math. (1971 et 1974), 5-78 et 5–77 Zbl0237.14003
  6. Hélène Esnault, V. Srinivas, Eckart Viehweg, The universal regular quotient of the Chow group of points on projective varieties, Invent. Math. 135 (1999), 595-664 Zbl0954.14003MR1669284
  7. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966), 95-103 Zbl0145.17602MR199194
  8. Robin Hartshorne, Residues and duality, (1966), Springer-Verlag, Berlin MR222093
  9. G. Laumon, Transformation de Fourier généralisée, (1996) 
  10. Henrik Russell, Generalized Albanese and its dual, J. Math. Kyoto Univ. 48 (2008), 907-949 Zbl1170.14005MR2513591
  11. Henrik Russell, Albanese varieties with modulus over a perfect field, (2010) Zbl1282.14078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.