Albanese varieties with modulus and Hodge theory
Kazuya Kato[1]; Henrik Russell[2]
- [1] University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
- [2] Universität Duisburg-Essen FB6 Mathematik, Campus Essen 45117 Essen (Germany)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 783-806
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKato, Kazuya, and Russell, Henrik. "Albanese varieties with modulus and Hodge theory." Annales de l’institut Fourier 62.2 (2012): 783-806. <http://eudml.org/doc/251041>.
@article{Kato2012,
abstract = {Let $X$ be a proper smooth variety over a field $k$ of characteristic $0$ and $Y$ an effective divisor on $X$ with multiplicity. We introduce a generalized Albanese variety Alb$(X,Y)$ of $X$ of modulus $Y$, as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For $k = \mathbb\{C\}$ we give a Hodge theoretic description.},
affiliation = {University of Chicago Department of Mathematics Chicago, IL 60637 (USA); Universität Duisburg-Essen FB6 Mathematik, Campus Essen 45117 Essen (Germany)},
author = {Kato, Kazuya, Russell, Henrik},
journal = {Annales de l’institut Fourier},
keywords = {generalized Albanese variety; modulus of a rational map; generalized mixed Hodge structure},
language = {eng},
number = {2},
pages = {783-806},
publisher = {Association des Annales de l’institut Fourier},
title = {Albanese varieties with modulus and Hodge theory},
url = {http://eudml.org/doc/251041},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Kato, Kazuya
AU - Russell, Henrik
TI - Albanese varieties with modulus and Hodge theory
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 783
EP - 806
AB - Let $X$ be a proper smooth variety over a field $k$ of characteristic $0$ and $Y$ an effective divisor on $X$ with multiplicity. We introduce a generalized Albanese variety Alb$(X,Y)$ of $X$ of modulus $Y$, as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For $k = \mathbb{C}$ we give a Hodge theoretic description.
LA - eng
KW - generalized Albanese variety; modulus of a rational map; generalized mixed Hodge structure
UR - http://eudml.org/doc/251041
ER -
References
top- Luca Barbieri-Viale, Formal Hodge theory, Math. Res. Lett. 14 (2007), 385-394 Zbl1131.14014MR2318642
- Luca Barbieri-Viale, Alessandra Bertapelle, Sharp de Rham realization, Adv. Math. 222 (2009), 1308-1338 Zbl1216.14006MR2554937
- Luca Barbieri-Viale, Vasudevan Srinivas, Albanese and Picard 1-motives, Mém. Soc. Math. Fr. (N.S.) (2001) Zbl0930.14012MR1891270
- Spencer Bloch, V. Srinivas, Enriched Hodge structures, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) 16 (2002), 171-184, Tata Inst. Fund. Res., Bombay Zbl1071.14012MR1940668
- Pierre Deligne, Théorie de Hodge. II et III, Inst. Hautes Études Sci. Publ. Math. (1971 et 1974), 5-78 et 5–77 Zbl0237.14003
- Hélène Esnault, V. Srinivas, Eckart Viehweg, The universal regular quotient of the Chow group of points on projective varieties, Invent. Math. 135 (1999), 595-664 Zbl0954.14003MR1669284
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966), 95-103 Zbl0145.17602MR199194
- Robin Hartshorne, Residues and duality, (1966), Springer-Verlag, Berlin MR222093
- G. Laumon, Transformation de Fourier généralisée, (1996)
- Henrik Russell, Generalized Albanese and its dual, J. Math. Kyoto Univ. 48 (2008), 907-949 Zbl1170.14005MR2513591
- Henrik Russell, Albanese varieties with modulus over a perfect field, (2010) Zbl1282.14078
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.