Albanese varieties with modulus and Hodge theory
Kazuya Kato[1]; Henrik Russell[2]
- [1] University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
- [2] Universität Duisburg-Essen FB6 Mathematik, Campus Essen 45117 Essen (Germany)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 783-806
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Luca Barbieri-Viale, Formal Hodge theory, Math. Res. Lett. 14 (2007), 385-394 Zbl1131.14014MR2318642
- Luca Barbieri-Viale, Alessandra Bertapelle, Sharp de Rham realization, Adv. Math. 222 (2009), 1308-1338 Zbl1216.14006MR2554937
- Luca Barbieri-Viale, Vasudevan Srinivas, Albanese and Picard 1-motives, Mém. Soc. Math. Fr. (N.S.) (2001) Zbl0930.14012MR1891270
- Spencer Bloch, V. Srinivas, Enriched Hodge structures, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) 16 (2002), 171-184, Tata Inst. Fund. Res., Bombay Zbl1071.14012MR1940668
- Pierre Deligne, Théorie de Hodge. II et III, Inst. Hautes Études Sci. Publ. Math. (1971 et 1974), 5-78 et 5–77 Zbl0237.14003
- Hélène Esnault, V. Srinivas, Eckart Viehweg, The universal regular quotient of the Chow group of points on projective varieties, Invent. Math. 135 (1999), 595-664 Zbl0954.14003MR1669284
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966), 95-103 Zbl0145.17602MR199194
- Robin Hartshorne, Residues and duality, (1966), Springer-Verlag, Berlin MR222093
- G. Laumon, Transformation de Fourier généralisée, (1996)
- Henrik Russell, Generalized Albanese and its dual, J. Math. Kyoto Univ. 48 (2008), 907-949 Zbl1170.14005MR2513591
- Henrik Russell, Albanese varieties with modulus over a perfect field, (2010) Zbl1282.14078