Integral models for moduli spaces of G -torsors

Martin Olsson[1]

  • [1] University of California Department of Mathematics 970 Evans Hall #3840 Berkeley, CA 94720-3840

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 4, page 1483-1549
  • ISSN: 0373-0956

Abstract

top
Given a finite tame group scheme G , we construct compactifications of moduli spaces of G -torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.

How to cite

top

Olsson, Martin. "Integral models for moduli spaces of $G$-torsors." Annales de l’institut Fourier 62.4 (2012): 1483-1549. <http://eudml.org/doc/251044>.

@article{Olsson2012,
abstract = {Given a finite tame group scheme $G$, we construct compactifications of moduli spaces of $G$-torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.},
affiliation = {University of California Department of Mathematics 970 Evans Hall #3840 Berkeley, CA 94720-3840},
author = {Olsson, Martin},
journal = {Annales de l’institut Fourier},
keywords = {Compacitification; moduli spaces; torsors; Abramovich-Vistoli theory; log scheme; Teichmüller structure; level structure; principal bundle; tame group scheme; G-torsor; twisted group torsor},
language = {eng},
number = {4},
pages = {1483-1549},
publisher = {Association des Annales de l’institut Fourier},
title = {Integral models for moduli spaces of $G$-torsors},
url = {http://eudml.org/doc/251044},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Olsson, Martin
TI - Integral models for moduli spaces of $G$-torsors
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1483
EP - 1549
AB - Given a finite tame group scheme $G$, we construct compactifications of moduli spaces of $G$-torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.
LA - eng
KW - Compacitification; moduli spaces; torsors; Abramovich-Vistoli theory; log scheme; Teichmüller structure; level structure; principal bundle; tame group scheme; G-torsor; twisted group torsor
UR - http://eudml.org/doc/251044
ER -

References

top
  1. D. Abramovich, M. Olsson, A. Vistoli, Tame stacks in positive characteristic, Annales de l’Institut Fourier 57 (2008), 1057-1091 Zbl1222.14004MR2427954
  2. D. Abramovich, M. Olsson, A. Vistoli, Twisted stable maps to tame Artin stacks, (to appear in J. Alg. Geometry) Zbl1225.14020MR2786662
  3. D. Abramovich, A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27-75 Zbl0991.14007MR1862797
  4. M. Artin, Algebraic approximation of structures over complete local rings, Publications Mathématiques de l’IHÉS 36 (1969), 23-58 Zbl0181.48802MR268188
  5. M. Artin, Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K. Kodaira) (1969), 21-71, Univ. Tokyo Press, Tokyo Zbl0205.50402MR260746
  6. M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, 269, 270, 305 (1972), Springer-Verlag, Berlin Zbl0234.00007
  7. N. Borne, A. Vistoli, Parabolic sheaves on logarithmic schemes, preprint (2010) Zbl1256.14002
  8. C. Cadman, Using stacks to impose tangency conditions on curves, American J. of Math. 129 (2007), 405-427 Zbl1127.14002MR2306040
  9. P. Deligne, Théorie de Hodge: II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57 Zbl0219.14007MR498551
  10. P. Deligne, Cohomologie étale, Séminaire de Géométrie Algébrique 569 (1977), Springer Zbl0349.14008MR463174
  11. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109 Zbl0181.48803MR262240
  12. J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967), Inst. Hautes Études Sci. Publ. Math. Zbl0153.22301
  13. R. Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. 118 (1983), 75-114 Zbl0569.14002MR707162
  14. A. Grothendieck, Revêtements étales et groupe fondamental, 224 (1971), Springer MR354651
  15. F. Kato, Log smooth deformation theory, Tohoku Math. J. 48 (1996), 317-354 Zbl0876.14007MR1404507
  16. K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (1989), 191-224, Johns Hopkins Univ. Press, Baltimore, MD, (Baltimore, MD, 1988) Zbl0776.14004MR1463703
  17. K. Matsuki, M. Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Letters 12 (2005), 207-217 Zbl1080.14023MR2150877
  18. A. Ogus, Logarithmic geometry and algebraic stacks, book in preparation (2008) 
  19. M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. d’ENS 36 (2003), 747-791 Zbl1069.14022MR2032986
  20. M. Olsson, Universal log structures on semi-stable varieties, Tohoku Math. J. 55 (2003), 397-438 Zbl1069.14015MR1993863
  21. M. Olsson, On proper coverings of Artin stacks, Adv. Math. 198 (2005), 93-106 Zbl1084.14004MR2183251
  22. M. Olsson, On (log) twisted curves, Comp. Math. 143 (2007), 476-494 Zbl1138.14017MR2309994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.