Integral models for moduli spaces of -torsors
- [1] University of California Department of Mathematics 970 Evans Hall #3840 Berkeley, CA 94720-3840
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 4, page 1483-1549
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOlsson, Martin. "Integral models for moduli spaces of $G$-torsors." Annales de l’institut Fourier 62.4 (2012): 1483-1549. <http://eudml.org/doc/251044>.
@article{Olsson2012,
abstract = {Given a finite tame group scheme $G$, we construct compactifications of moduli spaces of $G$-torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.},
affiliation = {University of California Department of Mathematics 970 Evans Hall #3840 Berkeley, CA 94720-3840},
author = {Olsson, Martin},
journal = {Annales de l’institut Fourier},
keywords = {Compacitification; moduli spaces; torsors; Abramovich-Vistoli theory; log scheme; Teichmüller structure; level structure; principal bundle; tame group scheme; G-torsor; twisted group torsor},
language = {eng},
number = {4},
pages = {1483-1549},
publisher = {Association des Annales de l’institut Fourier},
title = {Integral models for moduli spaces of $G$-torsors},
url = {http://eudml.org/doc/251044},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Olsson, Martin
TI - Integral models for moduli spaces of $G$-torsors
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1483
EP - 1549
AB - Given a finite tame group scheme $G$, we construct compactifications of moduli spaces of $G$-torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.
LA - eng
KW - Compacitification; moduli spaces; torsors; Abramovich-Vistoli theory; log scheme; Teichmüller structure; level structure; principal bundle; tame group scheme; G-torsor; twisted group torsor
UR - http://eudml.org/doc/251044
ER -
References
top- D. Abramovich, M. Olsson, A. Vistoli, Tame stacks in positive characteristic, Annales de l’Institut Fourier 57 (2008), 1057-1091 Zbl1222.14004MR2427954
- D. Abramovich, M. Olsson, A. Vistoli, Twisted stable maps to tame Artin stacks, (to appear in J. Alg. Geometry) Zbl1225.14020MR2786662
- D. Abramovich, A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27-75 Zbl0991.14007MR1862797
- M. Artin, Algebraic approximation of structures over complete local rings, Publications Mathématiques de l’IHÉS 36 (1969), 23-58 Zbl0181.48802MR268188
- M. Artin, Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K. Kodaira) (1969), 21-71, Univ. Tokyo Press, Tokyo Zbl0205.50402MR260746
- M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, 269, 270, 305 (1972), Springer-Verlag, Berlin Zbl0234.00007
- N. Borne, A. Vistoli, Parabolic sheaves on logarithmic schemes, preprint (2010) Zbl1256.14002
- C. Cadman, Using stacks to impose tangency conditions on curves, American J. of Math. 129 (2007), 405-427 Zbl1127.14002MR2306040
- P. Deligne, Théorie de Hodge: II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57 Zbl0219.14007MR498551
- P. Deligne, Cohomologie étale, Séminaire de Géométrie Algébrique 569 (1977), Springer Zbl0349.14008MR463174
- P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109 Zbl0181.48803MR262240
- J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967), Inst. Hautes Études Sci. Publ. Math. Zbl0153.22301
- R. Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. 118 (1983), 75-114 Zbl0569.14002MR707162
- A. Grothendieck, Revêtements étales et groupe fondamental, 224 (1971), Springer MR354651
- F. Kato, Log smooth deformation theory, Tohoku Math. J. 48 (1996), 317-354 Zbl0876.14007MR1404507
- K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (1989), 191-224, Johns Hopkins Univ. Press, Baltimore, MD, (Baltimore, MD, 1988) Zbl0776.14004MR1463703
- K. Matsuki, M. Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Letters 12 (2005), 207-217 Zbl1080.14023MR2150877
- A. Ogus, Logarithmic geometry and algebraic stacks, book in preparation (2008)
- M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. d’ENS 36 (2003), 747-791 Zbl1069.14022MR2032986
- M. Olsson, Universal log structures on semi-stable varieties, Tohoku Math. J. 55 (2003), 397-438 Zbl1069.14015MR1993863
- M. Olsson, On proper coverings of Artin stacks, Adv. Math. 198 (2005), 93-106 Zbl1084.14004MR2183251
- M. Olsson, On (log) twisted curves, Comp. Math. 143 (2007), 476-494 Zbl1138.14017MR2309994
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.