Strong q -variation inequalities for analytic semigroups

Christian Le Merdy[1]; Quanhua Xu[2]

  • [1] Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France
  • [2] School of Mathematics and Statistics Wuhan University Wuhan 430072 Hubei China and Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 6, page 2069-2097
  • ISSN: 0373-0956

Abstract

top
Let T : L p ( Ω ) L p ( Ω ) be a positive contraction, with 1 < p < . Assume that T is analytic, that is, there exists a constant K 0 such that T n - T n - 1 K / n for any integer n 1 . Let 2 < q < and let v q be the space of all complex sequences with a finite strong q -variation. We show that for any x L p ( Ω ) , the sequence [ T n ( x ) ] ( λ ) n 0 belongs to v q for almost every λ Ω , with an estimate ( T n ( x ) ) n 0 L p ( v q ) C x p . If we remove the analyticity assumption, we obtain an estimate ( M n ( T ) x ) n 0 L p ( v q ) C x p , where M n ( T ) = ( n + 1 ) - 1 k = 0 n T k denotes the ergodic average of T . We also obtain similar results for strongly continuous semigroups ( T t ) t 0 of positive contractions on L p -spaces.

How to cite

top

Le Merdy, Christian, and Xu, Quanhua. "Strong $q$-variation inequalities for analytic semigroups." Annales de l’institut Fourier 62.6 (2012): 2069-2097. <http://eudml.org/doc/251053>.

@article{LeMerdy2012,
abstract = {Let $T\colon L^p(\Omega )\rightarrow L^p(\Omega )$ be a positive contraction, with $1&lt;p&lt;\infty $. Assume that $T$ is analytic, that is, there exists a constant $K\ge 0$ such that $\Vert T^n-T^\{n-1\}\Vert \le K/n$ for any integer $n\ge 1$. Let $2&lt;q&lt;\infty $ and let $v^q$ be the space of all complex sequences with a finite strong $q$-variation. We show that for any $x\in L^p(\Omega )$, the sequence $\bigl ([T^n(x)](\lambda )\bigr )_\{n\ge 0\}$ belongs to $v^q$ for almost every $\lambda \in \Omega $, with an estimate $\Vert (T^n(x))_\{n\ge 0\}\Vert _\{L^p(v^q)\}\le C\Vert x\Vert _p$. If we remove the analyticity assumption, we obtain an estimate $\Vert (M_n(T)x)_\{n\ge 0\}\Vert _\{L^p(v^q)\}\le C\Vert x\Vert _p$, where $M_n(T)=(n+1)^\{-1\}\sum _\{k=0\}^\{n\} T^k\,$ denotes the ergodic average of $T$. We also obtain similar results for strongly continuous semigroups $(T_t)_\{t\ge 0\}$ of positive contractions on $L^p$-spaces.},
affiliation = {Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France; School of Mathematics and Statistics Wuhan University Wuhan 430072 Hubei China and Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France},
author = {Le Merdy, Christian, Xu, Quanhua},
journal = {Annales de l’institut Fourier},
keywords = {Ergodic theory; operators on $L^p$; strong $q$-variation; analytic semigroups; ergodic theory; operators on ; strong -variation},
language = {eng},
number = {6},
pages = {2069-2097},
publisher = {Association des Annales de l’institut Fourier},
title = {Strong $q$-variation inequalities for analytic semigroups},
url = {http://eudml.org/doc/251053},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Le Merdy, Christian
AU - Xu, Quanhua
TI - Strong $q$-variation inequalities for analytic semigroups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2069
EP - 2097
AB - Let $T\colon L^p(\Omega )\rightarrow L^p(\Omega )$ be a positive contraction, with $1&lt;p&lt;\infty $. Assume that $T$ is analytic, that is, there exists a constant $K\ge 0$ such that $\Vert T^n-T^{n-1}\Vert \le K/n$ for any integer $n\ge 1$. Let $2&lt;q&lt;\infty $ and let $v^q$ be the space of all complex sequences with a finite strong $q$-variation. We show that for any $x\in L^p(\Omega )$, the sequence $\bigl ([T^n(x)](\lambda )\bigr )_{n\ge 0}$ belongs to $v^q$ for almost every $\lambda \in \Omega $, with an estimate $\Vert (T^n(x))_{n\ge 0}\Vert _{L^p(v^q)}\le C\Vert x\Vert _p$. If we remove the analyticity assumption, we obtain an estimate $\Vert (M_n(T)x)_{n\ge 0}\Vert _{L^p(v^q)}\le C\Vert x\Vert _p$, where $M_n(T)=(n+1)^{-1}\sum _{k=0}^{n} T^k\,$ denotes the ergodic average of $T$. We also obtain similar results for strongly continuous semigroups $(T_t)_{t\ge 0}$ of positive contractions on $L^p$-spaces.
LA - eng
KW - Ergodic theory; operators on $L^p$; strong $q$-variation; analytic semigroups; ergodic theory; operators on ; strong -variation
UR - http://eudml.org/doc/251053
ER -

References

top
  1. M. Akcoglu, L. Sucheston, Dilations of positive contractions on L p spaces, Canad. Math. Bull. 20 (1977), 285-292 Zbl0381.47004MR458230
  2. N. Asmar, E. Berkson, T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 (1991), 47-74 Zbl0729.43003MR1087801
  3. S. Blunck, Analyticity and discrete maximal regularity on L p -spaces, J. Funct. Anal. 183 (2001), 211-230 Zbl0987.47027MR1837537
  4. J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES 69 (1989), 5-41 Zbl0705.28008MR1019960
  5. J. T. Campbell, R. L. Jones, K. Reinhold, M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J. 105 (2000), 59-83 Zbl1013.42008MR1788042
  6. R. Coifman, R. Rochberg, G. Weiss, Applications of transference: the L p version of von Neumann’s inequality and the Littlewood-Paley-Stein theory, Linear spaces and Approximation (1978), 53-67, Birkhäuser, Basel Zbl0398.47005MR500219
  7. R. R. Coifman, G. Weiss, Transference methods in analysis, (1977), Amer. Math. Soc. Zbl0377.43001MR481928
  8. T. Coulhon, L. Saloff-Coste, Puissances d’un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 419-436 Zbl0709.47042MR1066086
  9. R. Crescimbeni, R. A. Macías, T. Menárguez, J. L. Torrea, B. Viviani, The ρ -variation as an operator between maximal operators and singular integrals, J. Evol. Equ. 9 (2009), 81-102 Zbl1239.42012MR2501353
  10. B. Delyon, F. Delyon, Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France 127 (1999), 25-41 Zbl0937.47004MR1700467
  11. N. Dunford, J. T. Schwartz, Linear operators, Part 1, 7 (1958), Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London Zbl0084.10402MR117523
  12. G. Fendler, Dilations of one parameter semigroups of positive contractions on L p -spaces, Canad. J. Math. 48 (1997), 726-748 Zbl0907.47039MR1471054
  13. V. F. Gaposhkin, Ergodic theorem for functions of normal operators (Russian), Funktsional. Anal. i Prilozhen. 18 (1984), 1-6 Zbl0557.47005MR739083
  14. J. A. Goldstein, Semigroups of linear operators and applications, (1985), Oxford University Press, New York Zbl0592.47034MR790497
  15. R. L. Jones, R. Kaufman, J. M. Rosenblatt, M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), 889-935 Zbl0924.28009MR1645330
  16. R. L. Jones, K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Systems 21 (2001), 1809-1829 Zbl1060.28013MR1869071
  17. R. L. Jones, A. Seeger, J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), 6711-6742 Zbl1159.42013MR2434308
  18. R. L. Jones, G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc. 356 (2004), 4493-4518 Zbl1065.42006MR2067131
  19. C. Le Merdy, Q. Xu, Maximal theorems and square functions for analytic operators on L p -spaces Zbl1264.47036
  20. Yu. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math. 134 (1999), 153-167 Zbl0945.47005MR1688223
  21. D. Lépingle, La variation d’ordre p des semi-martingales (French), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 295-316 Zbl0325.60047MR420837
  22. P. Meyer-Nieberg, Banach lattices, (1991), Springer, Berlin-Heidelberg-NewYork Zbl0743.46015MR1128093
  23. B. Nagy, J. Zemanek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143-151 Zbl0934.47002MR1688222
  24. O. Nevanlinna, Convergence of iterations for linear equations, (1993), Birkhaüser, Basel Zbl0846.47008MR1217705
  25. R. Oberlin, A. Seeger, T. Tao, C. Thiele, J. Wright, A variation norm Carleson theorem 
  26. A. Pazy, Semigroups of linear operators and applications to partial differential equations, (1983), Springer Zbl0516.47023MR710486
  27. V. Peller, An analogue of J. von Neumann’s inequality for the space L p (Russian), Dokl. Akad. Nauk SSSR 231 (1976), 359-542 Zbl0394.47006MR435925
  28. G. Pisier, Complex interpolation and regular operators between Banach lattices, Arch. Math. (Basel) 62 (1994), 261-269 Zbl0991.46007MR1259842
  29. G. Pisier, Q. Xu, The strong p -variation of martingale and orthogonal series, Probab. Th. Rel. Fields 77 (1988), 497-514 Zbl0632.60004MR933985
  30. E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, (1970), Princeton University Press Zbl0193.10502MR252961
  31. A. de la Torre, A simple proof of the maximal ergodic theorem, Canad. J. Math. 28 (1976), 1073-1075 Zbl0336.47006MR417819
  32. K. Yosida, Functional Analysis, (1968), Springer Verlag 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.