Strong -variation inequalities for analytic semigroups
Christian Le Merdy[1]; Quanhua Xu[2]
- [1] Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France
- [2] School of Mathematics and Statistics Wuhan University Wuhan 430072 Hubei China and Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2069-2097
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLe Merdy, Christian, and Xu, Quanhua. "Strong $q$-variation inequalities for analytic semigroups." Annales de l’institut Fourier 62.6 (2012): 2069-2097. <http://eudml.org/doc/251053>.
@article{LeMerdy2012,
abstract = {Let $T\colon L^p(\Omega )\rightarrow L^p(\Omega )$ be a positive contraction, with $1<p<\infty $. Assume that $T$ is analytic, that is, there exists a constant $K\ge 0$ such that $\Vert T^n-T^\{n-1\}\Vert \le K/n$ for any integer $n\ge 1$. Let $2<q<\infty $ and let $v^q$ be the space of all complex sequences with a finite strong $q$-variation. We show that for any $x\in L^p(\Omega )$, the sequence $\bigl ([T^n(x)](\lambda )\bigr )_\{n\ge 0\}$ belongs to $v^q$ for almost every $\lambda \in \Omega $, with an estimate $\Vert (T^n(x))_\{n\ge 0\}\Vert _\{L^p(v^q)\}\le C\Vert x\Vert _p$. If we remove the analyticity assumption, we obtain an estimate $\Vert (M_n(T)x)_\{n\ge 0\}\Vert _\{L^p(v^q)\}\le C\Vert x\Vert _p$, where $M_n(T)=(n+1)^\{-1\}\sum _\{k=0\}^\{n\} T^k\,$ denotes the ergodic average of $T$. We also obtain similar results for strongly continuous semigroups $(T_t)_\{t\ge 0\}$ of positive contractions on $L^p$-spaces.},
affiliation = {Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France; School of Mathematics and Statistics Wuhan University Wuhan 430072 Hubei China and Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France},
author = {Le Merdy, Christian, Xu, Quanhua},
journal = {Annales de l’institut Fourier},
keywords = {Ergodic theory; operators on $L^p$; strong $q$-variation; analytic semigroups; ergodic theory; operators on ; strong -variation},
language = {eng},
number = {6},
pages = {2069-2097},
publisher = {Association des Annales de l’institut Fourier},
title = {Strong $q$-variation inequalities for analytic semigroups},
url = {http://eudml.org/doc/251053},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Le Merdy, Christian
AU - Xu, Quanhua
TI - Strong $q$-variation inequalities for analytic semigroups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2069
EP - 2097
AB - Let $T\colon L^p(\Omega )\rightarrow L^p(\Omega )$ be a positive contraction, with $1<p<\infty $. Assume that $T$ is analytic, that is, there exists a constant $K\ge 0$ such that $\Vert T^n-T^{n-1}\Vert \le K/n$ for any integer $n\ge 1$. Let $2<q<\infty $ and let $v^q$ be the space of all complex sequences with a finite strong $q$-variation. We show that for any $x\in L^p(\Omega )$, the sequence $\bigl ([T^n(x)](\lambda )\bigr )_{n\ge 0}$ belongs to $v^q$ for almost every $\lambda \in \Omega $, with an estimate $\Vert (T^n(x))_{n\ge 0}\Vert _{L^p(v^q)}\le C\Vert x\Vert _p$. If we remove the analyticity assumption, we obtain an estimate $\Vert (M_n(T)x)_{n\ge 0}\Vert _{L^p(v^q)}\le C\Vert x\Vert _p$, where $M_n(T)=(n+1)^{-1}\sum _{k=0}^{n} T^k\,$ denotes the ergodic average of $T$. We also obtain similar results for strongly continuous semigroups $(T_t)_{t\ge 0}$ of positive contractions on $L^p$-spaces.
LA - eng
KW - Ergodic theory; operators on $L^p$; strong $q$-variation; analytic semigroups; ergodic theory; operators on ; strong -variation
UR - http://eudml.org/doc/251053
ER -
References
top- M. Akcoglu, L. Sucheston, Dilations of positive contractions on spaces, Canad. Math. Bull. 20 (1977), 285-292 Zbl0381.47004MR458230
- N. Asmar, E. Berkson, T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 (1991), 47-74 Zbl0729.43003MR1087801
- S. Blunck, Analyticity and discrete maximal regularity on -spaces, J. Funct. Anal. 183 (2001), 211-230 Zbl0987.47027MR1837537
- J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES 69 (1989), 5-41 Zbl0705.28008MR1019960
- J. T. Campbell, R. L. Jones, K. Reinhold, M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J. 105 (2000), 59-83 Zbl1013.42008MR1788042
- R. Coifman, R. Rochberg, G. Weiss, Applications of transference: the version of von Neumann’s inequality and the Littlewood-Paley-Stein theory, Linear spaces and Approximation (1978), 53-67, Birkhäuser, Basel Zbl0398.47005MR500219
- R. R. Coifman, G. Weiss, Transference methods in analysis, (1977), Amer. Math. Soc. Zbl0377.43001MR481928
- T. Coulhon, L. Saloff-Coste, Puissances d’un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 419-436 Zbl0709.47042MR1066086
- R. Crescimbeni, R. A. Macías, T. Menárguez, J. L. Torrea, B. Viviani, The -variation as an operator between maximal operators and singular integrals, J. Evol. Equ. 9 (2009), 81-102 Zbl1239.42012MR2501353
- B. Delyon, F. Delyon, Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France 127 (1999), 25-41 Zbl0937.47004MR1700467
- N. Dunford, J. T. Schwartz, Linear operators, Part 1, 7 (1958), Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London Zbl0084.10402MR117523
- G. Fendler, Dilations of one parameter semigroups of positive contractions on -spaces, Canad. J. Math. 48 (1997), 726-748 Zbl0907.47039MR1471054
- V. F. Gaposhkin, Ergodic theorem for functions of normal operators (Russian), Funktsional. Anal. i Prilozhen. 18 (1984), 1-6 Zbl0557.47005MR739083
- J. A. Goldstein, Semigroups of linear operators and applications, (1985), Oxford University Press, New York Zbl0592.47034MR790497
- R. L. Jones, R. Kaufman, J. M. Rosenblatt, M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), 889-935 Zbl0924.28009MR1645330
- R. L. Jones, K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Systems 21 (2001), 1809-1829 Zbl1060.28013MR1869071
- R. L. Jones, A. Seeger, J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), 6711-6742 Zbl1159.42013MR2434308
- R. L. Jones, G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc. 356 (2004), 4493-4518 Zbl1065.42006MR2067131
- C. Le Merdy, Q. Xu, Maximal theorems and square functions for analytic operators on -spaces Zbl1264.47036
- Yu. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math. 134 (1999), 153-167 Zbl0945.47005MR1688223
- D. Lépingle, La variation d’ordre des semi-martingales (French), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 295-316 Zbl0325.60047MR420837
- P. Meyer-Nieberg, Banach lattices, (1991), Springer, Berlin-Heidelberg-NewYork Zbl0743.46015MR1128093
- B. Nagy, J. Zemanek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143-151 Zbl0934.47002MR1688222
- O. Nevanlinna, Convergence of iterations for linear equations, (1993), Birkhaüser, Basel Zbl0846.47008MR1217705
- R. Oberlin, A. Seeger, T. Tao, C. Thiele, J. Wright, A variation norm Carleson theorem
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, (1983), Springer Zbl0516.47023MR710486
- V. Peller, An analogue of J. von Neumann’s inequality for the space (Russian), Dokl. Akad. Nauk SSSR 231 (1976), 359-542 Zbl0394.47006MR435925
- G. Pisier, Complex interpolation and regular operators between Banach lattices, Arch. Math. (Basel) 62 (1994), 261-269 Zbl0991.46007MR1259842
- G. Pisier, Q. Xu, The strong -variation of martingale and orthogonal series, Probab. Th. Rel. Fields 77 (1988), 497-514 Zbl0632.60004MR933985
- E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, (1970), Princeton University Press Zbl0193.10502MR252961
- A. de la Torre, A simple proof of the maximal ergodic theorem, Canad. J. Math. 28 (1976), 1073-1075 Zbl0336.47006MR417819
- K. Yosida, Functional Analysis, (1968), Springer Verlag
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.