Generalization of von Neumann's spectral sets and integral representation of operators

Bernard Delyon; François Delyon

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 1, page 25-41
  • ISSN: 0037-9484

How to cite

top

Delyon, Bernard, and Delyon, François. "Generalization of von Neumann's spectral sets and integral representation of operators." Bulletin de la Société Mathématique de France 127.1 (1999): 25-41. <http://eudml.org/doc/87800>.

@article{Delyon1999,
author = {Delyon, Bernard, Delyon, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {numerical range; field of values; spectral sets; spectral measures; integral representation; functional calculus; non-normal operators; Burkholder conjecture},
language = {eng},
number = {1},
pages = {25-41},
publisher = {Société mathématique de France},
title = {Generalization of von Neumann's spectral sets and integral representation of operators},
url = {http://eudml.org/doc/87800},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Delyon, Bernard
AU - Delyon, François
TI - Generalization of von Neumann's spectral sets and integral representation of operators
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 1
SP - 25
EP - 41
LA - eng
KW - numerical range; field of values; spectral sets; spectral measures; integral representation; functional calculus; non-normal operators; Burkholder conjecture
UR - http://eudml.org/doc/87800
ER -

References

top
  1. [1] BRUNEL (A.). — Les M-espérances conditionnelles. — Laboratoire de probabilités, Université Pierre et Marie Curie, Paris, 1996. 
  2. [2] KRENGEL (U.). — Ergodic Theorems. — Walter de Gruyter, Berlin, 1985. Zbl0575.28009MR87i:28001
  3. [3] VON NEUMANN (J.). — Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachrichten, t. 4, 1951, p. 258-281. Zbl0042.12301MR13,254a
  4. [4] RIESZ (F.), NAGY (B.Sz.). — Leçons d'analyse fonctionnelle. — Gauthier-Villars, Paris, 1968. 
  5. [5] KATO (T.). — Perturbation theory for linear operators. — Springer-Verlag, 1966. Zbl0148.12601MR34 #3324
  6. [6] RUDIN (W.). — Real and complex analysis. — Mc Graw-Hill, 1974. Zbl0278.26001MR49 #8783
  7. [7] STEIN (E.). — Topics in Harmonic Analysis. — Princeton University Press, 1970. Zbl0193.10502
  8. [8] STEIN (E.). — On the maximal ergodic theorem, Proc. Nat. Acad. Sci. USA, t. 47, 1961, p. 1894-1897. Zbl0182.47102MR24 #A1367
  9. [9] ZAHAROPOL (R.). — On products of conditional expectation operators, Can. Math. Bull., t. 33, n° 3, 1990, p. 257-260. Zbl0755.47008MR91j:47007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.