Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On square functions associated to sectorial operators

Christian Le Merdy — 2004

Bulletin de la Société Mathématique de France

We give new results on square functions x F = 0 F ( t A ) x 2 d t t 1 / 2 p associated to a sectorial operator A on L p for 1 < p < . Under the assumption that A is actually R -sectorial, we prove equivalences of the form K - 1 x G x F K x G for suitable functions F , G . We also show that A has a bounded H functional calculus with respect to . F . Then we apply our results to the study of conditions under which we have an estimate ( 0 | C e - t A ( x ) | 2 d t ) 1 / 2 q M x p , when - A generates a bounded semigroup e - t A on L p and C : D ( A ) L q is a linear mapping.

Finite rank approximation and semidiscreteness for linear operators

Christian Le Merdy — 1999

Annales de l'institut Fourier

Given a completely bounded map u : Z M from an operator space Z into a von Neumann algebra (or merely a unital dual algebra) M , we define u to be C -semidiscrete if for any operator algebra A , the tensor operator I A u is bounded from A min Z into A nor M , with norm less than C . We investigate this property and characterize it by suitable approximation properties, thus generalizing the Choi-Effros characterization of semidiscrete von Neumann algebras. Our work is an extension of some recent work of Pisier on an analogous...

Square functions, bounded analytic semigroups, and applications

Christian Le Merdy — 2007

Banach Center Publications

To any bounded analytic semigroup on Hilbert space or on L p -space, one may associate natural ’square functions’. In this survey paper, we review old and recent results on these square functions, as well as some extensions to various classes of Banach spaces, including noncommutative L p -spaces, Banach lattices, and their subspaces. We give some applications to H functional calculus, similarity problems, multiplier theory, and control theory.

Sums of commuting operators with maximal regularity

Christian Le MerdyArnaud Simard — 2001

Studia Mathematica

Let Y be a Banach space and let S L p be a subspace of an L p space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to S ( Y ) L p ( Y ) . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and e - t B is a positive contraction on L p for any...

Strong q -variation inequalities for analytic semigroups

Christian Le MerdyQuanhua Xu — 2012

Annales de l’institut Fourier

Let T : L p ( Ω ) L p ( Ω ) be a positive contraction, with 1 < p < . Assume that T is analytic, that is, there exists a constant K 0 such that T n - T n - 1 K / n for any integer n 1 . Let 2 < q < and let v q be the space of all complex sequences with a finite strong q -variation. We show that for any x L p ( Ω ) , the sequence [ T n ( x ) ] ( λ ) n 0 belongs to v q for almost every λ Ω , with an estimate ( T n ( x ) ) n 0 L p ( v q ) C x p . If we remove the analyticity assumption, we obtain an estimate ( M n ( T ) x ) n 0 L p ( v q ) C x p , where M n ( T ) = ( n + 1 ) - 1 k = 0 n T k denotes the ergodic average of T . We also obtain similar results for strongly continuous semigroups ( T t ) t 0 of positive...

Caractérisation Des Espaces 1-Matriciellement Normés

Le Merdy, ChristianMezrag, Lahcéne — 2002

Serdica Mathematical Journal

Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p...

Page 1

Download Results (CSV)