Numerical character of the effectivity of adjoint line bundles
Frédéric Campana[1]; Vincent Koziarz[1]; Mihai Păun[1]
- [1] Université Henri Poincaré Institut Élie Cartan B.P. 70239 54506 Vandœuvre-lès-Nancy Cedex (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 107-119
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCampana, Frédéric, Koziarz, Vincent, and Păun, Mihai. "Numerical character of the effectivity of adjoint line bundles." Annales de l’institut Fourier 62.1 (2012): 107-119. <http://eudml.org/doc/251075>.
@article{Campana2012,
abstract = {In this note we show that, for any log-canonical pair $(X, \Delta )$, $K_X+ \Delta $ is $\mathbb\{Q\}$-effective if its Chern class contains an effective $\mathbb\{Q\}$-divisor. Then, we derive some direct corollaries.},
affiliation = {Université Henri Poincaré Institut Élie Cartan B.P. 70239 54506 Vandœuvre-lès-Nancy Cedex (France); Université Henri Poincaré Institut Élie Cartan B.P. 70239 54506 Vandœuvre-lès-Nancy Cedex (France); Université Henri Poincaré Institut Élie Cartan B.P. 70239 54506 Vandœuvre-lès-Nancy Cedex (France)},
author = {Campana, Frédéric, Koziarz, Vincent, Păun, Mihai},
journal = {Annales de l’institut Fourier},
keywords = {Log-canonical pairs; adjoint systems; ramified coverings; log canonical pairs},
language = {eng},
number = {1},
pages = {107-119},
publisher = {Association des Annales de l’institut Fourier},
title = {Numerical character of the effectivity of adjoint line bundles},
url = {http://eudml.org/doc/251075},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Campana, Frédéric
AU - Koziarz, Vincent
AU - Păun, Mihai
TI - Numerical character of the effectivity of adjoint line bundles
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 107
EP - 119
AB - In this note we show that, for any log-canonical pair $(X, \Delta )$, $K_X+ \Delta $ is $\mathbb{Q}$-effective if its Chern class contains an effective $\mathbb{Q}$-divisor. Then, we derive some direct corollaries.
LA - eng
KW - Log-canonical pairs; adjoint systems; ramified coverings; log canonical pairs
UR - http://eudml.org/doc/251075
ER -
References
top- Donu Arapura, Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull. Amer. Math. Soc. 26 (1992), 310-314 Zbl0759.14016MR1129312
- Donu Arapura, Geometry of cohomology support loci for local systems. I, J. Algebraic Geom. 6 (1997), 563-597 Zbl0923.14010MR1487227
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468 Zbl1210.14019MR2601039
- Nero Budur, Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers, Adv. Math. 221 (2009), 217-250 Zbl1187.14024MR2509325
- F. Campana, T. Peternell, M. Toma, Geometric stability of the cotangent bundle and the universal cover of a projective manifold Zbl1218.14030MR2815027
- J. Chen, C. Hacon, On the irregularity of the image of the Iitaka fibration, Comm. in Algebra 32 (2004), 203-215 Zbl1137.14008MR2036231
- Hélène Esnault, Eckart Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), 161-194 Zbl0603.32006MR853449
- O. Fujino, On Kawamata’s theorem Zbl1213.14015
- S. Fukuda, An elementary semi-ampleness result for log-canonical divisors Zbl1258.14019
- Y. Gongyo, Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs Zbl1312.14024
- Y. Kawamata, On the abundance theorem in the case Zbl1263.14017
- Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567-588 Zbl0593.14010MR782236
- János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- Noboru Nakayama, Zariski-decomposition and abundance, 14 (2004), Mathematical Society of Japan, Tokyo Zbl1061.14018MR2104208
- M Păun, Relative critical exponents, non-vanishing and metrics with minimal singularities Zbl1251.32018
- V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), 635-651 Zbl0605.14006MR794958
- C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. E.N.S. (4) 26 (1993), 361-401 Zbl0798.14005MR1222278
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.