A local-global principle for rational isogenies of prime degree
- [1] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 475-485
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSutherland, Andrew V.. "A local-global principle for rational isogenies of prime degree." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 475-485. <http://eudml.org/doc/251084>.
@article{Sutherland2012,
abstract = {Let $K$ be a number field. We consider a local-global principle for elliptic curves $E/K$ that admit (or do not admit) a rational isogeny of prime degree $\ell $. For suitable $K$ (including $K=\mathbb\{Q\}$), we prove that this principle holds for all $\ell \equiv 1\;\@mod \;4$, and for $\ell < 7$, but find a counterexample when $\ell =7$ for an elliptic curve with $j$-invariant $2268945/128$. For $K=\mathbb\{Q\}$ we show that, up to isomorphism, this is the only counterexample.},
affiliation = {Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139},
author = {Sutherland, Andrew V.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {elliptic curve; isogeny; local-global principle; elliptic curves},
language = {eng},
month = {6},
number = {2},
pages = {475-485},
publisher = {Société Arithmétique de Bordeaux},
title = {A local-global principle for rational isogenies of prime degree},
url = {http://eudml.org/doc/251084},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Sutherland, Andrew V.
TI - A local-global principle for rational isogenies of prime degree
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 475
EP - 485
AB - Let $K$ be a number field. We consider a local-global principle for elliptic curves $E/K$ that admit (or do not admit) a rational isogeny of prime degree $\ell $. For suitable $K$ (including $K=\mathbb{Q}$), we prove that this principle holds for all $\ell \equiv 1\;\@mod \;4$, and for $\ell < 7$, but find a counterexample when $\ell =7$ for an elliptic curve with $j$-invariant $2268945/128$. For $K=\mathbb{Q}$ we show that, up to isomorphism, this is the only counterexample.
LA - eng
KW - elliptic curve; isogeny; local-global principle; elliptic curves
UR - http://eudml.org/doc/251084
ER -
References
top- Yuri Bilu, Pierre Parent, and Marusia Rebolledo, Rational points on . To appear in Annales de l’institut Fourier, arXiv:1104.4641v1 (2011).
- David A. Cox, Primes of the form : Fermat, class field theory, and complex multiplication. John Wiley and Sons, 1989. Zbl0956.11500MR1028322
- John Cremona, The elliptic curve database for conductors to . Algorithmic Number Theory Symposium–ANTS VII (F. Hess, S. Pauli, and M. Pohst, eds.), Lecture Notes in Computer Science, vol. 4076, Springer-Verlag, 2006, pp. 11–29. Zbl1143.11324MR2282912
- Noam D. Elkies, The Klein quartic in number theory. The Eightfold Way: The Beauty of Klein’s Quartic Curve (Silvio Levy, ed.), Cambridge University Press, 2001, pp. 51–102. Zbl0991.11032MR1722413
- —, private communication, March 2010.
- Jun-Ichi Igusa, Kroneckerian model of fields of elliptic modular functions. American Journal of Mathematics 81 (1959), 561–577. Zbl0093.04502MR108498
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, second ed., Springer-Verlag, 1990. Zbl0482.10001MR1070716
- Nicholas M. Katz, Galois properties of torsion points on abelian varieties. Inventiones Mathematicae 62 (1981), no. 3, 481–502. Zbl0471.14023MR604840
- Serge Lang, Introduction to modular forms, Springer, 1976. Zbl0344.10011MR429740
- —, Elliptic functions, second ed., Springer-Verlag, 1987. MR890960
- Barry Mazur, An introduction to the deformation theory of Galois representations. Modular forms and Fermat’s last theorem, Springer, 1997. Zbl0901.11015MR1638481
- Pierre J. R. Parent, Towards the triviality of for . Compositio Mathematica 141 (2005), 561–572. Zbl1167.11310MR2135276
- René Schoof, Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7 (1995), 219–254. Zbl0852.11073MR1413578
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones Mathematicae 15 (1972), no. 2, 259–331. Zbl0235.14012MR387283
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.