A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland[1]

  • [1] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 475-485
  • ISSN: 1246-7405

Abstract

top
Let K be a number field. We consider a local-global principle for elliptic curves E / K that admit (or do not admit) a rational isogeny of prime degree . For suitable K (including K = ), we prove that this principle holds for all 1 mod 4 , and for < 7 , but find a counterexample when = 7 for an elliptic curve with j -invariant 2268945 / 128 . For K = we show that, up to isomorphism, this is the only counterexample.

How to cite

top

Sutherland, Andrew V.. "A local-global principle for rational isogenies of prime degree." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 475-485. <http://eudml.org/doc/251084>.

@article{Sutherland2012,
abstract = {Let $K$ be a number field. We consider a local-global principle for elliptic curves $E/K$ that admit (or do not admit) a rational isogeny of prime degree $\ell $. For suitable $K$ (including $K=\mathbb\{Q\}$), we prove that this principle holds for all $\ell \equiv 1\;\@mod \;4$, and for $\ell &lt; 7$, but find a counterexample when $\ell =7$ for an elliptic curve with $j$-invariant $2268945/128$. For $K=\mathbb\{Q\}$ we show that, up to isomorphism, this is the only counterexample.},
affiliation = {Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139},
author = {Sutherland, Andrew V.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {elliptic curve; isogeny; local-global principle; elliptic curves},
language = {eng},
month = {6},
number = {2},
pages = {475-485},
publisher = {Société Arithmétique de Bordeaux},
title = {A local-global principle for rational isogenies of prime degree},
url = {http://eudml.org/doc/251084},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Sutherland, Andrew V.
TI - A local-global principle for rational isogenies of prime degree
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 475
EP - 485
AB - Let $K$ be a number field. We consider a local-global principle for elliptic curves $E/K$ that admit (or do not admit) a rational isogeny of prime degree $\ell $. For suitable $K$ (including $K=\mathbb{Q}$), we prove that this principle holds for all $\ell \equiv 1\;\@mod \;4$, and for $\ell &lt; 7$, but find a counterexample when $\ell =7$ for an elliptic curve with $j$-invariant $2268945/128$. For $K=\mathbb{Q}$ we show that, up to isomorphism, this is the only counterexample.
LA - eng
KW - elliptic curve; isogeny; local-global principle; elliptic curves
UR - http://eudml.org/doc/251084
ER -

References

top
  1. Yuri Bilu, Pierre Parent, and Marusia Rebolledo, Rational points on X 0 + ( p r ) . To appear in Annales de l’institut Fourier, arXiv:1104.4641v1 (2011). 
  2. David A. Cox, Primes of the form x 2 + n y 2 : Fermat, class field theory, and complex multiplication. John Wiley and Sons, 1989. Zbl0956.11500MR1028322
  3. John Cremona, The elliptic curve database for conductors to 130000 . Algorithmic Number Theory Symposium–ANTS VII (F. Hess, S. Pauli, and M. Pohst, eds.), Lecture Notes in Computer Science, vol. 4076, Springer-Verlag, 2006, pp. 11–29. Zbl1143.11324MR2282912
  4. Noam D. Elkies, The Klein quartic in number theory. The Eightfold Way: The Beauty of Klein’s Quartic Curve (Silvio Levy, ed.), Cambridge University Press, 2001, pp. 51–102. Zbl0991.11032MR1722413
  5. —, private communication, March 2010. 
  6. Jun-Ichi Igusa, Kroneckerian model of fields of elliptic modular functions. American Journal of Mathematics 81 (1959), 561–577. Zbl0093.04502MR108498
  7. Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, second ed., Springer-Verlag, 1990. Zbl0482.10001MR1070716
  8. Nicholas M. Katz, Galois properties of torsion points on abelian varieties. Inventiones Mathematicae 62 (1981), no. 3, 481–502. Zbl0471.14023MR604840
  9. Serge Lang, Introduction to modular forms, Springer, 1976. Zbl0344.10011MR429740
  10. —, Elliptic functions, second ed., Springer-Verlag, 1987. MR890960
  11. Barry Mazur, An introduction to the deformation theory of Galois representations. Modular forms and Fermat’s last theorem, Springer, 1997. Zbl0901.11015MR1638481
  12. Pierre J. R. Parent, Towards the triviality of X 0 + ( p r ) ( ) for r &gt; 1 . Compositio Mathematica 141 (2005), 561–572. Zbl1167.11310MR2135276
  13. René Schoof, Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7 (1995), 219–254. Zbl0852.11073MR1413578
  14. Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones Mathematicae 15 (1972), no. 2, 259–331. Zbl0235.14012MR387283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.