An effective proof of the hyperelliptic Shafarevich conjecture
- [1] IHÉS 35 Route de Chartres 91440 Bures-sur-Yvette France
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 507-530
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topvon Känel, Rafael. "An effective proof of the hyperelliptic Shafarevich conjecture." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 507-530. <http://eudml.org/doc/275799>.
@article{vonKänel2014,
abstract = {Let $C$ be a hyperelliptic curve of genus $g\ge 1$ over a number field $K$ with good reduction outside a finite set of places $S$ of $K$. We prove that $C$ has a Weierstrass model over the ring of integers of $K$ with height effectively bounded only in terms of $g$, $S$ and $K$. In particular, we obtain that for any given number field $K$, finite set of places $S$ of $K$ and integer $g\ge 1$ one can in principle determine the set of $K$-isomorphism classes of hyperelliptic curves over $K$ of genus $g$ with good reduction outside $S$.},
affiliation = {IHÉS 35 Route de Chartres 91440 Bures-sur-Yvette France},
author = {von Känel, Rafael},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {507-530},
publisher = {Société Arithmétique de Bordeaux},
title = {An effective proof of the hyperelliptic Shafarevich conjecture},
url = {http://eudml.org/doc/275799},
volume = {26},
year = {2014},
}
TY - JOUR
AU - von Känel, Rafael
TI - An effective proof of the hyperelliptic Shafarevich conjecture
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 507
EP - 530
AB - Let $C$ be a hyperelliptic curve of genus $g\ge 1$ over a number field $K$ with good reduction outside a finite set of places $S$ of $K$. We prove that $C$ has a Weierstrass model over the ring of integers of $K$ with height effectively bounded only in terms of $g$, $S$ and $K$. In particular, we obtain that for any given number field $K$, finite set of places $S$ of $K$ and integer $g\ge 1$ one can in principle determine the set of $K$-isomorphism classes of hyperelliptic curves over $K$ of genus $g$ with good reduction outside $S$.
LA - eng
UR - http://eudml.org/doc/275799
ER -
References
top- A. Baker and G. Wüstholz, Logarithmic forms and Diophantine geometry, New Mathematical Monographs, 9, Cambridge University Press, Cambridge, (2007). Zbl1145.11004MR2382891
- A. Bérczes, J.-H. Evertse, and K. Győry, Diophantine problems related to discriminants and resultants of binary forms, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa (2007), 45–63. Zbl1190.11024MR2349646
- E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, Cambridge, (2006). Zbl1115.11034MR2216774
- A. Brumer and J. H. Silverman, The number of elliptic curves over with conductor , Manuscripta Math. 91, 1, (1996), 95–102. Zbl0868.11029MR1404420
- J. Coates, An effective -adic analogue of a theorem of Thue. III. The diophantine equation , Acta Arith., 16 (1969/1970), 425–435. Zbl0221.10027MR263742
- R. de Jong and G. Rémond, Conjecture de Shafarevitch effective pour les revêtements cycliques, Algebra Number Theory 5,8 (2011), 1133–1143. Zbl1276.11110MR2948475
- J.-H. Evertse, On equations in -units and the Thue-Mahler equation, Invent. Math. 75, 3 (1984), 561–584. Zbl0521.10015MR735341
- J.-H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math., 79, 2 (1991), 169–204. Zbl0746.11020MR1117339
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73,3 (1983), 349–366. Zbl0588.14026MR718935
- C. Fuchs, R. von Känel, and G. Wüstholz, An effective Shafarevich theorem for elliptic curves, Acta Arith., 148, 2 (2011), 189–203. Zbl1231.11061MR2786163
- K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely domains, J. Reine Angew. Math., 346 (1984), 54–100. Zbl0519.13008MR727397
- —, Polynomials and binary forms with given discriminant, Publ. Math. Debrecen, 69, 4, (2006), 473–499. Zbl1121.11073MR2274970
- K. Győry and K. Yu, Bounds for the solutions of -unit equations and decomposable form equations, Acta Arith., 123, 1 (2006), 9–41. Zbl1163.11026MR2232500
- H. A. Helfgott and A. Venkatesh, Integral points on elliptic curves and 3-torsion in class groups, J. Amer. Math. Soc., 19, 3 (2006), 527–550. Zbl1127.14029MR2220098
- H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.), 26,2 (1992), 211–244. Zbl0759.11046MR1129315
- A. Levin, Siegel’s theorem and the Shafarevich conjecture, J. Théor. Nombres Bordeaux, 24, 3 (2012), 705–727. Zbl1271.11065MR3010636
- Q. Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc., 348, 11 (1996), 4577–4610. Zbl0926.11043MR1363944
- —, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, (2002), Oxford Science Publications. Zbl0996.14005MR1917232
- P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer., Math. Soc., 342, 2 (1994), 729–752. Zbl0815.11031MR1195511
- J. R. Merriman and N. P. Smart, Curves of genus with good reduction away from with a rational Weierstrass point, Math. Proc. Cambridge Philos. Soc., 114, 2 (1993), 203–214, Corrigenda: [21]. Zbl0805.14018MR1230127
- —, Corrigenda: “Curves of genus with good reduction away from with a rational Weierstrass point”, Math. Proc. Cambridge Philos. Soc., 118, 1 (1995), 189. MR1329468
- F. Oort, Hyperelliptic curves over number fields, Classification of algebraic varieties and compact complex manifolds, Springer, Berlin, 412, (1974) 211–218. Lecture Notes in Math. Zbl0299.14017MR354676
- A. N. Paršin, Minimal models of curves of genus , and homomorphisms of abelian varieties defined over a field of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 67–109. Zbl0249.14003MR316456
- F. Pazuki, Theta height and Faltings height, Bull. Soc. Math. France, 140, 1 (2012), 19–49. Zbl1245.14029MR2903770
- B. Poonen, Computational aspects of curves of genus at least , Algorithmic number theory (Talence, 1996), Lecture Notes in Comput. Sci., Springer, Berlin, 1122, (1996) pp. 283–306. Zbl0891.11037MR1446520
- G. Rémond, Hauteurs thêta et construction de Kodaira, J. Number Theory, 78, 2 (1999), 287–311. Zbl0947.14016MR1713465
- —, Nombre de points rationnels des courbes, Proc. Lond. Math. Soc. (3), 101, 3 (2010), 759–794. MR2734960
- T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J., 57, 1 (1988), 151–173. Zbl0657.14017MR952229
- I.R. Shafarevich, Algebraic number fields, Proc. Internat. Congr. Mathematicians, Stockholm, Inst. Mittag-Leffler, Djursholm, (1962), 163–176. Zbl0133.29303MR202709
- J. H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, 106, Springer, Dordrecht, (2009). Zbl1194.11005MR2514094
- N. P. Smart, -unit equations, binary forms and curves of genus , Proc. London Math. Soc. (3) 75, 2 (1997), 271–307. Zbl0885.11031MR1455857
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23, (1974), 135–152. Zbl0278.12005MR342472
- R. von Känel, On Szpiro’s Discriminant Conjecture, Internat. Math. Res. Notices, (2013), 1–35, Available online: doi: 10.1093/imrn/rnt079. MR3250040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.