An effective proof of the hyperelliptic Shafarevich conjecture

Rafael von Känel[1]

  • [1] IHÉS 35 Route de Chartres 91440 Bures-sur-Yvette France

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 2, page 507-530
  • ISSN: 1246-7405

Abstract

top
Let C be a hyperelliptic curve of genus g 1 over a number field K with good reduction outside a finite set of places S of K . We prove that C has a Weierstrass model over the ring of integers of K with height effectively bounded only in terms of g , S and K . In particular, we obtain that for any given number field K , finite set of places S of K and integer g 1 one can in principle determine the set of K -isomorphism classes of hyperelliptic curves over K of genus g with good reduction outside S .

How to cite

top

von Känel, Rafael. "An effective proof of the hyperelliptic Shafarevich conjecture." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 507-530. <http://eudml.org/doc/275799>.

@article{vonKänel2014,
abstract = {Let $C$ be a hyperelliptic curve of genus $g\ge 1$ over a number field $K$ with good reduction outside a finite set of places $S$ of $K$. We prove that $C$ has a Weierstrass model over the ring of integers of $K$ with height effectively bounded only in terms of $g$, $S$ and $K$. In particular, we obtain that for any given number field $K$, finite set of places $S$ of $K$ and integer $g\ge 1$ one can in principle determine the set of $K$-isomorphism classes of hyperelliptic curves over $K$ of genus $g$ with good reduction outside $S$.},
affiliation = {IHÉS 35 Route de Chartres 91440 Bures-sur-Yvette France},
author = {von Känel, Rafael},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {507-530},
publisher = {Société Arithmétique de Bordeaux},
title = {An effective proof of the hyperelliptic Shafarevich conjecture},
url = {http://eudml.org/doc/275799},
volume = {26},
year = {2014},
}

TY - JOUR
AU - von Känel, Rafael
TI - An effective proof of the hyperelliptic Shafarevich conjecture
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 507
EP - 530
AB - Let $C$ be a hyperelliptic curve of genus $g\ge 1$ over a number field $K$ with good reduction outside a finite set of places $S$ of $K$. We prove that $C$ has a Weierstrass model over the ring of integers of $K$ with height effectively bounded only in terms of $g$, $S$ and $K$. In particular, we obtain that for any given number field $K$, finite set of places $S$ of $K$ and integer $g\ge 1$ one can in principle determine the set of $K$-isomorphism classes of hyperelliptic curves over $K$ of genus $g$ with good reduction outside $S$.
LA - eng
UR - http://eudml.org/doc/275799
ER -

References

top
  1. A. Baker and G. Wüstholz, Logarithmic forms and Diophantine geometry, New Mathematical Monographs, 9, Cambridge University Press, Cambridge, (2007). Zbl1145.11004MR2382891
  2. A. Bérczes, J.-H. Evertse, and K. Győry, Diophantine problems related to discriminants and resultants of binary forms, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa (2007), 45–63. Zbl1190.11024MR2349646
  3. E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, Cambridge, (2006). Zbl1115.11034MR2216774
  4. A. Brumer and J. H. Silverman, The number of elliptic curves over Q with conductor N , Manuscripta Math. 91, 1, (1996), 95–102. Zbl0868.11029MR1404420
  5. J. Coates, An effective p -adic analogue of a theorem of Thue. III. The diophantine equation y 2 = x 3 + k , Acta Arith., 16 (1969/1970), 425–435. Zbl0221.10027MR263742
  6. R. de Jong and G. Rémond, Conjecture de Shafarevitch effective pour les revêtements cycliques, Algebra Number Theory 5,8 (2011), 1133–1143. Zbl1276.11110MR2948475
  7. J.-H. Evertse, On equations in S -units and the Thue-Mahler equation, Invent. Math. 75, 3 (1984), 561–584. Zbl0521.10015MR735341
  8. J.-H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math., 79, 2 (1991), 169–204. Zbl0746.11020MR1117339
  9. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73,3 (1983), 349–366. Zbl0588.14026MR718935
  10. C. Fuchs, R. von Känel, and G. Wüstholz, An effective Shafarevich theorem for elliptic curves, Acta Arith., 148, 2 (2011), 189–203. Zbl1231.11061MR2786163
  11. K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely domains, J. Reine Angew. Math., 346 (1984), 54–100. Zbl0519.13008MR727397
  12. —, Polynomials and binary forms with given discriminant, Publ. Math. Debrecen, 69, 4, (2006), 473–499. Zbl1121.11073MR2274970
  13. K. Győry and K. Yu, Bounds for the solutions of S -unit equations and decomposable form equations, Acta Arith., 123, 1 (2006), 9–41. Zbl1163.11026MR2232500
  14. H. A. Helfgott and A. Venkatesh, Integral points on elliptic curves and 3-torsion in class groups, J. Amer. Math. Soc., 19, 3 (2006), 527–550. Zbl1127.14029MR2220098
  15. H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.), 26,2 (1992), 211–244. Zbl0759.11046MR1129315
  16. A. Levin, Siegel’s theorem and the Shafarevich conjecture, J. Théor. Nombres Bordeaux, 24, 3 (2012), 705–727. Zbl1271.11065MR3010636
  17. Q. Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc., 348, 11 (1996), 4577–4610. Zbl0926.11043MR1363944
  18. —, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, (2002), Oxford Science Publications. Zbl0996.14005MR1917232
  19. P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer., Math. Soc., 342, 2 (1994), 729–752. Zbl0815.11031MR1195511
  20. J. R. Merriman and N. P. Smart, Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point, Math. Proc. Cambridge Philos. Soc., 114, 2 (1993), 203–214, Corrigenda: [21]. Zbl0805.14018MR1230127
  21. —, Corrigenda: “Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point”, Math. Proc. Cambridge Philos. Soc., 118, 1 (1995), 189. MR1329468
  22. F. Oort, Hyperelliptic curves over number fields, Classification of algebraic varieties and compact complex manifolds, Springer, Berlin, 412, (1974) 211–218. Lecture Notes in Math. Zbl0299.14017MR354676
  23. A. N. Paršin, Minimal models of curves of genus 2 , and homomorphisms of abelian varieties defined over a field of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 67–109. Zbl0249.14003MR316456
  24. F. Pazuki, Theta height and Faltings height, Bull. Soc. Math. France, 140, 1 (2012), 19–49. Zbl1245.14029MR2903770
  25. B. Poonen, Computational aspects of curves of genus at least 2 , Algorithmic number theory (Talence, 1996), Lecture Notes in Comput. Sci., Springer, Berlin, 1122, (1996) pp. 283–306. Zbl0891.11037MR1446520
  26. G. Rémond, Hauteurs thêta et construction de Kodaira, J. Number Theory, 78, 2 (1999), 287–311. Zbl0947.14016MR1713465
  27. —, Nombre de points rationnels des courbes, Proc. Lond. Math. Soc. (3), 101, 3 (2010), 759–794. MR2734960
  28. T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J., 57, 1 (1988), 151–173. Zbl0657.14017MR952229
  29. I.R. Shafarevich, Algebraic number fields, Proc. Internat. Congr. Mathematicians, Stockholm, Inst. Mittag-Leffler, Djursholm, (1962), 163–176. Zbl0133.29303MR202709
  30. J. H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, 106, Springer, Dordrecht, (2009). Zbl1194.11005MR2514094
  31. N. P. Smart, S -unit equations, binary forms and curves of genus 2 , Proc. London Math. Soc. (3) 75, 2 (1997), 271–307. Zbl0885.11031MR1455857
  32. H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23, (1974), 135–152. Zbl0278.12005MR342472
  33. R. von Känel, On Szpiro’s Discriminant Conjecture, Internat. Math. Res. Notices, (2013), 1–35, Available online: doi: 10.1093/imrn/rnt079. MR3250040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.