The Hilbert Scheme of Buchsbaum space curves
- [1] Oslo and Akershus University College of Applied Sciences Faculty of Technology, Art and Design Pb. 4, St. Olavs plass N-0130 Oslo, Norway
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2099-2130
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKleppe, Jan O.. "The Hilbert Scheme of Buchsbaum space curves." Annales de l’institut Fourier 62.6 (2012): 2099-2130. <http://eudml.org/doc/251108>.
@article{Kleppe2012,
abstract = {We consider the Hilbert scheme $\mathop \{H\}(d,g)$ of space curves $C$ with homogeneous ideal $I(C):=H_\{*\}^0(\mathcal\{I\}_\{C\})$ and Rao module $M:=H_\{*\}^1(\mathcal\{I\}_\{C\})$. By taking suitable generizations (deformations to a more general curve) $C^\{\prime\}$ of $C$, we simplify the minimal free resolution of $I(C)$ by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of $I(C^\{\prime\})$. Using this for Buchsbaum curves of diameter one ($M_v \ne 0$ for only one $v$), we establish a one-to-one correspondence between the set $\mathcal\{S\}$ of irreducible components of $\mathop \{H\}(d,g)$ that contain $(C)$ and a set of minimal 5-tuples that specializes in an explicit manner to a 5-tuple of certain graded Betti numbers of $C$ related to ghost-terms. Moreover we almost completely (resp. completely) determine the graded Betti numbers of all generizations of $C$ (resp. all generic curves of $\mathcal\{S\}$), and we give a specific description of the singular locus of the Hilbert scheme of curves of diameter at most one. We also prove some semi-continuity results for the graded Betti numbers of any space curve under some assumptions.},
affiliation = {Oslo and Akershus University College of Applied Sciences Faculty of Technology, Art and Design Pb. 4, St. Olavs plass N-0130 Oslo, Norway},
author = {Kleppe, Jan O.},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert scheme; space curve; Buchsbaum curve; graded Betti numbers; ghost term; linkage},
language = {eng},
number = {6},
pages = {2099-2130},
publisher = {Association des Annales de l’institut Fourier},
title = {The Hilbert Scheme of Buchsbaum space curves},
url = {http://eudml.org/doc/251108},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Kleppe, Jan O.
TI - The Hilbert Scheme of Buchsbaum space curves
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2099
EP - 2130
AB - We consider the Hilbert scheme $\mathop {H}(d,g)$ of space curves $C$ with homogeneous ideal $I(C):=H_{*}^0(\mathcal{I}_{C})$ and Rao module $M:=H_{*}^1(\mathcal{I}_{C})$. By taking suitable generizations (deformations to a more general curve) $C^{\prime}$ of $C$, we simplify the minimal free resolution of $I(C)$ by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of $I(C^{\prime})$. Using this for Buchsbaum curves of diameter one ($M_v \ne 0$ for only one $v$), we establish a one-to-one correspondence between the set $\mathcal{S}$ of irreducible components of $\mathop {H}(d,g)$ that contain $(C)$ and a set of minimal 5-tuples that specializes in an explicit manner to a 5-tuple of certain graded Betti numbers of $C$ related to ghost-terms. Moreover we almost completely (resp. completely) determine the graded Betti numbers of all generizations of $C$ (resp. all generic curves of $\mathcal{S}$), and we give a specific description of the singular locus of the Hilbert scheme of curves of diameter at most one. We also prove some semi-continuity results for the graded Betti numbers of any space curve under some assumptions.
LA - eng
KW - Hilbert scheme; space curve; Buchsbaum curve; graded Betti numbers; ghost term; linkage
UR - http://eudml.org/doc/251108
ER -
References
top- M. Amasaki, Examples of Nonsingular Irreducible Curves Which Give Reducible Singular Points of red(), Publ. RIMS, Kyoto Univ. 21 (1985), 761-786 Zbl0609.14002MR817163
- G. Bolondi, Irreducible families of curves with fixed cohomology, Arch. der Math. 53 (1989), 300-305 Zbl0658.14005MR1006724
- G. Bolondi, J.O. Kleppe, R.M. Miro-Roig, Maximal rank curves and singular points of the Hilbert scheme, Compositio Math. 77 (1991), 269-291 Zbl0724.14018MR1092770
- G. Bolondi, J. Migliore, Classification of Maximal Rank Curves in the Liaison Class , Math. Ann. 277 (1987), 585-603 Zbl0607.14015MR901706
- G. Bolondi, J. Migliore, The Lazarsfeld-Rao property on an arithmetically Gorenstein variety, Manuscripta Math. 78 (1993), 347-368 Zbl0813.14035MR1208646
- M. Boratyński, S. Greco, Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. (4) 142 (1985), 277-292 Zbl0591.14007MR839041
- M-C. Chang, A Filtered Bertini-type Theorem, J. reine angew. Math. 397 (1989), 214-219 Zbl0663.14008MR993224
- D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- Ph. Ellia, M. Fiorentini, Défaut de postulation et singularités du Schéma de Hilbert, Annali Univ. di Ferrara 30 (1984), 185-198 Zbl0577.14019MR796926
- Ph. Ellia, A. Hirschowitz, E. Mezzetti, On the number of irreducible components of the Hilbert scheme of smooth space curves, International J. of Math. 3 (1992), 799-807 Zbl0824.14024MR1194072
- G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans à cône de Cohen-Macaulay, Ann. Scient. Éc. Norm. Sup. 8 (1975), 423-432 Zbl0325.14002MR393020
- S. Ginouillac, Sur le nombre de composant du schéma de Hilbert des courbes ACM de , C. R. Acad. Sci. Paris Sér. I, Math. 329 (1999), 857-862 Zbl0961.14002MR1727997
- A. Grothendieck, Les schémas de Hilbert, (1960)
- L. Gruson, Chr. Peskine, Genre des courbes de l’espace projectif, Proc. Tromsø 1977 687 (1978), Springer-Verlag, New York Zbl0412.14011MR527229
- S. Guffroy, Sur l’incomplétude de la série linéaire caractéristique d’une famille de courbes planes à nœuds et à cusps, Nagoya Math. J. 171 (2003), 51-83 Zbl1085.14501MR2002013
- R. Hartshorne, Algebraic Geometry, 52 (1983), Springer-Verlag, New York Zbl0531.14001MR360574
- A. Iarrobino, Betti strata of height two ideals, J. Algebra 285 (2005), 835-855 Zbl1095.13014MR2125467
- J. O. Kleppe, Deformations of graded algebras, Math. Scand. 45 (1979), 205-231 Zbl0436.14004MR580600
- J. O. Kleppe, Liaison of families of subschemes in , Algebraic Curves and Projective Geometry, Proceedings (Trento, 1988) 1389 (1989), Springer-Verlag, New York Zbl0697.14003MR1023396
- J. O. Kleppe, The Hilbert Scheme of Space Curves of small diameter, Annales de l’institut Fourier 56 (2006), 1297-1335 Zbl1117.14006MR2273858
- J. O. Kleppe, Families of Artinian and one-dimensional algebras, J. Algebra 311 (2007), 665-701 Zbl1129.14009MR2314729
- A. Laudal, Formal Moduli of Algebraic Structures, 754 (1979), Springer-Verlag, New York Zbl0438.14007MR551624
- M. Martin-Deschamps, D. Perrin, Sur la classification des courbes gauches, 184-185 (1990) Zbl0717.14017MR1073438
- M. Martin-Deschamps, D. Perrin, Courbes Gauches et Modules de Rao, J. reine angew. Math. 439 (1993), 103-145 Zbl0765.14017MR1219697
- J. Migliore, Introduction to liaison theory and deficiency modules, 165 (1998), Birkhäuser Boston, Inc., Boston, MA Zbl0921.14033MR1712469
- I. Peeva, Consecutive cancellations in Betti Numbers, Proc. Amer. Math. Soc. 132 (2004), 3503-3507 Zbl1099.13505MR2084070
- Ch. Peskine, L. Szpiro, Liaison des variétés algébrique, Invent. Math. 26 (1974), 271-302 Zbl0298.14022MR364271
- R. Piene, M. Schlessinger, On the Hilbert scheme compactification of the space of twisted cubics, Amer. J. Math. 107 (1985), 761-774 Zbl0589.14009MR796901
- A. Ragusa, G. Zappalá, On the reducibility of the postulation Hilbert scheme, Rend. Circ. Mat. Palermo, Serie II (2004), 401-406 Zbl1099.13029MR2165191
- A. P. Rao, Liaison Among Curves, Invent. Math. 50 (1979), 205-217 Zbl0406.14033MR520926
- E. Sernesi, Un esempio di curva ostruita in , (1981), 223-231
- C. Walter, Some examples of obstructed curves in , Complex Projective Geometry 179 (1992) Zbl0787.14021MR1201393
- C. Walter, Transversality Theorems in General Characteristic with Applications to Arithmetically Buchsbaum Schemes, Internat. J. Math. 5 (1994), 609-617 Zbl0828.14031MR1284572
- C. A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.