Equivariant Euler characteristics and sheaf resolvents
Ph. Cassou-Noguès[1]; M.J. Taylor[2]
- [1] Institut de Mathématiques de Bordeaux Université Bordeaux 1 351, cours de la Libération 33405 Talence Cedex France
- [2] The University of Manchester School of Mathematics Alan Turing Building Oxford Road Manchester, M13 9PL UK
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2315-2345
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCassou-Noguès, Ph., and Taylor, M.J.. "Equivariant Euler characteristics and sheaf resolvents." Annales de l’institut Fourier 62.6 (2012): 2315-2345. <http://eudml.org/doc/251109>.
@article{Cassou2012,
abstract = {For certain tame abelian covers of arithmetic surfaces we obtain formulas, involving a quadratic form derived from intersection numbers, for the equivariant Euler characteristics of both the canonical sheaf and also its square root. These formulas allow us to carry out explicit calculations; in particular, we are able to exhibit examples where these two Euler characteristics and that of the structure sheaf are all different and non-trivial. Our results are obtained by using resolvent techniques together with the local Riemann-Roch Theorem.},
affiliation = {Institut de Mathématiques de Bordeaux Université Bordeaux 1 351, cours de la Libération 33405 Talence Cedex France; The University of Manchester School of Mathematics Alan Turing Building Oxford Road Manchester, M13 9PL UK},
author = {Cassou-Noguès, Ph., Taylor, M.J.},
journal = {Annales de l’institut Fourier},
keywords = {Euler characteristic; resolvent; intersection numbers},
language = {eng},
number = {6},
pages = {2315-2345},
publisher = {Association des Annales de l’institut Fourier},
title = {Equivariant Euler characteristics and sheaf resolvents},
url = {http://eudml.org/doc/251109},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Cassou-Noguès, Ph.
AU - Taylor, M.J.
TI - Equivariant Euler characteristics and sheaf resolvents
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2315
EP - 2345
AB - For certain tame abelian covers of arithmetic surfaces we obtain formulas, involving a quadratic form derived from intersection numbers, for the equivariant Euler characteristics of both the canonical sheaf and also its square root. These formulas allow us to carry out explicit calculations; in particular, we are able to exhibit examples where these two Euler characteristics and that of the structure sheaf are all different and non-trivial. Our results are obtained by using resolvent techniques together with the local Riemann-Roch Theorem.
LA - eng
KW - Euler characteristic; resolvent; intersection numbers
UR - http://eudml.org/doc/251109
ER -
References
top- T. Chinburg, Galois module structure of de Rham cohomology, J. de Théorie des Nombres de Bordeaux 4 (1991), 1-18 Zbl0768.14008MR1183915
- T. Chinburg, Galois structure of the de Rham cohomology of tame covers of schemes, Ann. of Math. 139 (1994), 443-490 Zbl0828.14007MR1274097
- T. Chinburg, B. Erez, Equivariant Euler-Poincaré characteristics and tameness, Astérisque 209 (1992), 179-194 Zbl0796.11051MR1211011
- T. Chinburg, B. Erez, G. Pappas, M. J. Taylor, Tame actions of group schemes: integrals amd slices, Duke Math. J. 82 (1996), 269-308 Zbl0907.14021MR1387229
- T. Chinburg, B. Erez, G. Pappas, M. J. Taylor, Riemann-Roch type theorems for arithmetic schemes with a finite group action, J. Reine Angew. Math. 489 (1997), 151-187 Zbl0903.19001MR1461208
- T. Chinburg, B. Erez, G. Pappas, M. J. Taylor, -constants and the Galois structure of de Rham cohomology, Ann. of Math. 146 (1997), 411-473 Zbl0939.14009MR1477762
- T. Chinburg, G. Pappas, M. J. Taylor, Cubic structures, equivariant Euler characteristics and lattices of modular forms, Ann. of Math. 170 (2009), 561-608 Zbl1255.14010MR2552102
- B. Erez, M. J. Taylor, Hermitian modules in Galois extensions of number fields and Adams operations, Ann. of Math. 135 (1992), 271-296 Zbl0756.11035MR1154594
- A. Fröhlich, Arithmetic and Galois module structure for tame extensions, J. Crelle 286/287 (1976), 380-440 Zbl0385.12004MR432595
- A. Fröhlich, Galois module structure of algebraic integers, (1983), Springer-Verlag Zbl0501.12012MR717033
- W. Fulton, Intersection theory, 2nd edition, (1998), Folge, Springer-Verlag Zbl0885.14002MR1644323
- R. Hartshorne, Residues and Duality, 20 (1966), Springer-Verlag MR222093
- R. Hartshorne, Algebraic Geometry, 52 (1977), Springer-Verlag Zbl0531.14001MR463157
- S. Lang, Introduction to Arakelov theory, (1988), Springer-Verlag Zbl0667.14001MR969124
- G. Pappas, Galois modules and the Theorem of the Cube, Invent. Math. 133 (1998), 193-225 Zbl0923.14030MR1626489
- G. Pappas, Galois module structure and the -filtration, Compositio Mathematica 121 (2000), 79-104 Zbl0968.14026MR1753111
- J.-P. Serre, Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris 311, Série 1 (1990), 547-552 Zbl0742.14030MR1078120
- M. J. Taylor, On the self duality of a ring of integers as a Galois module, Invent. Math. 46 (1978), 173-177 Zbl0381.12007MR472770
- M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), 41-79 Zbl0469.12003MR608528
- M. J. Taylor, Class groups of group rings, (1983), C. U. P. Zbl0597.13002
- L. Washington, Introduction to cyclotomic fields, (1980), Springer Verlag Zbl0484.12001MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.